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Living things benefit from exquisite molecular sensitivity in many of their key
processes, including DNA replication, transcription and translation, chemical
sensing, and morphogenesis. At thermodynamic equilibrium, the basic bio-

physical mechanism for sensitivity is cooperative binding, for which it can be
shown that the Hill coefficient, a sensitivity measure, cannot exceed the
number of binding sites. Generalizing this fact, we find that for any kinetic
scheme, at or away from thermodynamic equilibrium, a very simple structural
quantity, the size of the support of a perturbation, always limits the effective
Hill coefficient. We show how this bound sheds light on and unifies diverse
sensitivity mechanisms, including kinetic proofreading and a nonequilibrium
Monod-Wyman-Changeux (MWC) model proposed for the E. coli flagellar
motor switch, representing in each case a simple, precise bridge between
experimental observations and the models we write down. In pursuit of
mechanisms that saturate the support bound, we find a nonequilibrium
binding mechanism, nested hysteresis, with sensitivity exponential in the
number of binding sites, with implications for our understanding of models of
gene regulation and the function of biomolecular condensates.

Sensitivity—the size of the response to a small perturbation—is a key
figure of merit for performance on a number of tasks accomplished by
living cells, including sensing chemical concentrations*’, accurate
signal transduction in cascades’, molecular discrimination*, and gene
regulation”®. It is also a basic experimental observable, and so
there is a long history of theoretical work connecting sensitivity
measures to underlying mechanisms that could explain them—going
back to Hill’s realization that the sigmoidal binding curve of oxygen to
hemoglobin®’ could be explained by binding to “aggregations” of
hemoglobin'.

The set of known mechanisms that can underlie high sensitivity is
very diverse, growing to include—in the past 50 years—nonequilibrium
ones such as the “futile cycle” and kinetic proofreading*", whose study
raises significant new challenges. Nevertheless, the success of a
remarkably homogeneous modeling approach, rooted in chemical
kinetics, makes possible a search for unifying principles—laws of
sensitivity.

The prototypical sensitivity mechanism in biophysics is the
cooperative binding of multiple copies of a ligand to a macromolecule.

The probability or fraction of the fully bound state is frequently fit with
a Hill function®,

K +xH’

foo @
where x is the concentration of the ligand, K is an effective dissociation
constant, and the Hill coefficient, H quantifies the (logarithmic) sen-
sitivity. Equation (1) arises as an effective description in many different
contexts, with H depending in a complicated way on underlying
details. However, in all cases of binding at thermodynamic equilibrium,
there is a simple upper bound: the Hill coefficient cannot exceed the
maximum number n of ligands that can be bound at once. This limit on
the sensitivity in terms of n is purely structural, being independent of
all affinities and kinetic parameters.

The bound on the Hill coefficient is just one example of the many
tight links between structure and function that hold at thermodynamic
equilibrium. But many challenges at the frontier of molecular biology
today unavoidably require tackling nonequilibrium. For example,
many aspects of gene regulation in eukaryotes” *—from the spreading
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of epigenetic marks' to the action of enhancers”'*—have inspired the

use of nonequilibrium models. These models confront us with many
parameters we cannot measure or handle analytically. New, none-
quilibrium laws relating structure to function would help us tackle this
complexity.

In this work, we show how the equilibrium bound on the Hill
coefficient admits a vast generalization to nonequilibrium systems. We
find that for any kinetic scheme, the logarithmic sensitivity of any
steady-state observable to a perturbation—as quantified, for example,
by a Hill coefficient—cannot exceed the size of the support of the
perturbation, a simple structural quantity we introduce: the support is
the set of states that the system leaves faster after the perturbation
than before. The size of the support is always less than the number of
system states—the size of the kinetic scheme.

The support bound on sensitivity applies to a large class of models
—all continuous-time Markov chains, sometimes known as “kinetic
schemes” or “kinetic networks”—that are ubiquitous in biophysics,
arising as the master equation of chemical reaction networks or as a
coarse-grained description of the conformational dynamics of a
single macromolecule. To illustrate the range of biological contexts in
which the support bound applies, we show how it advances our
understanding of a nonequilibrium Monod-Wyman-Changeux
(MWC)-like model proposed for the Escherichia coli flagellar motor'®?°,
recovers known limits to molecular discrimination in kinetic
proofreading>®, and yields bounds on the accuracy of nonequilibrium
chemical sensing”?. In each of these examples, the support bound
provides a way to go from experimental measurements of sensitivity to
a concrete prediction about the underlying mechanism.

Finally, we apply the support bound to a class of models
describing unordered, nonequilibrium, cooperative binding of a ligand
(such as a transcription factor)—studied by prior authors”®* in the
context of the highly sensitive Hunchback-Bicoid system** in Droso-
phila. The support bound yields an upper bound on the Hill coefficient
exponential in the number of binding sites (n), exceeding the limits
identified by numerical search of the parameter space’®. We find that
the exponential bound can in fact be achieved, by a nonequilibrium
mechanism we identify and call nested hysteresis. The exponential-in-n
sensitivity achievable with nested hysteresis qualitatively exceeds
that of any equilibrium sensitivity mechanism, with implications for
the ascription of function to large molecular aggregations, such as
biomolecular condensates, in the nonequilibrium context of a
living cell.

Results
Kinetic schemes and perturbations
The sensitivity law we prove in this work applies to any system that
may be modeled as undergoing transitions between a finite number
of possible states {1, ..., N}, with transition rates depending (directly)
only on the current state, not on history. Models of this form are
ubiquitous in nonequilibrium physics, chemistry, and biophysics,
where they are known by many names including: continuous-time
Markov chains, Markov jump processes, kinetic networks®, discrete-
state kinetics®, linear framework graphs™?, or as we will call them,
kinetic schemes®.

In any such model, the probability p«(¢) for a system to be found in
state i at time ¢ evolves according to the master equation:

dp(®) _ <-
e ; Wb (0), @

where Wj; is the rate of the transition from state j to state i, and the
diagonal entries are W;= — "X, W

To any transition rate matrix W can be associated a weighted,
directed graph G whose vertices are the states of the system and whose
directed edges represent allowed transitions, weighted by the

transition rate. The structure of this graph G plays a central role in the
study of the scheme. In our figures (e.g., Fig. 1), we will liberally use
drawings of the graph G to represent schemes.

Under weak assumptions, the solution p,(¢) to (2) converges to a
unique steady-state distribution m satisfying

zi:n'izl‘ (3)

2_Wym=0,
J

Quantities measured experimentally are often averages over
observation times long enough that transients can be neglected, so
that what is really measured is just the average of some observable A
(any function of system state) over the steady-state distribution:

(A = ZA:'”[- 4)

Our focus in this work is how such steady-state averages, or ratios
of them, respond to changes in a parameter of interest x that controls
some of the transition rates W (x)—i.e., quantities of interest will always
be of the form fix)=(A), or fix)=(A)/(B)r. We will consider only
positive observables, that is, observables A for which each of the 4; is
nonnegative and at least one is positive.

We will also restrict attention to the case where the parameter x
simply multiplicatively scales some of the transition rates. This is often
appropriate in biophysical examples for schemes representing the
binding of (potentially several copies of) a ligand L to a macro-
molecule, where x is the concentration of L (e.g., Fig. 1b). In this case,
some transitions in a kinetic scheme will correspond to the binding of
L, and the law of mass action leads to a linear, multiplicative depen-
dence of the rate of those transitions on x.

The measure of sensitivity we focus on—and seek to bound—is the
logarithmic sensitivity of a quantity of interest f{x) with respect to the
parameter Xx:

dlogf(x) x df(x)
dlogx =~ f(x) dx

©)

What is the relationship between the derivative (5) and the Hill
coefficient? If fix) were a Hill function (1), the logarithmic sensitivity
would be

dlogf(x) _
dlogx ~

KH
H ( o +XH> =H(1—f ), (6)

but there is no guarantee that a function of interest will actually “be” a
Hill function. It is common nevertheless to report an “effective Hill
coefficient,” Hes, but there are in fact several distinct quantities going
by this name®21%?3° The different definitions all give Heir=H in the
case of the Hill function, but in general they are not equivalent. How-
ever, we will see that a bound on the logarithmic sensitivity will also
bound Heg, in all its various incarnations. Note that a bound on the
logarithmic sensitivity also implies a bound on the amplification of a
“fold-change,” another common sensitivity measure (Methods).

The support bound
The support of the perturbation of x is defined as the set of states
(vertices in G) that have at least one outgoing transition (directed
edge) that depends on x. The support consists of exactly those states
whose exit rates depend on (and are increasing in) x. Note that the size
of the support cannot exceed the total number of states N in the
scheme.

We are now ready to state our main result. If A and B are positive
observables of a kinetic scheme, and m is the size of the support of the
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Fig. 1| Illustration of our main result. a Example of a sensitive relationship
between a parameter x and a quantity f(x). The slope on a log-log plot is a measure
of sensitivity closely linked to the Hill coefficient. Our main result (inset equation)
is that under general conditions this derivative is bounded by the size of the
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support of the perturbation of x. In each example (b, ¢, or d), the graph G of a
kinetic scheme, to which our result applies, is shown. The transitions whose rates
depend on x are indicated in red. The support (green) consists of those states from
which the red transitions leave.

perturbation of x, then

dlog(A),/(B),
dlogx

<m. 7

Note that m is completely independent of A and B.

We call this inequality the support bound. Our proof, which we
give in the Methods, is an application of the Markov chain tree
theorem®*¢, which gives, for any kinetic scheme, an explicit algebraic
expression for the steady state i in terms of all the transition rates. Our
result (7) refines prior results in the Markov chain literature®® which
gave bounds on sensitivities in terms of the total number of states V. It
is also related in spirit to the results of Wong et al.*, who apply the
Markov chain tree theorem to find structural conditions for the
emergence of the Michaelis—-Menten formula from general kinetic
schemes.

The inequality (7) serves as a companion result to those of our
own prior work®, which aimed to understand nonequilibrium
response subject to thermodynamic constraints. The support bound
reveals the limits of sensitivity set by structure alone, when thermo-
dynamic constraints are completely loosened.

A useful corollary of (7) follows from taking the observable A to be
the indicator function of a subset X of states and B to be the indicator
function of the complement X of X. In this case, (A) =ty is the steady-
state probability of finding the system in one of the states of X and
(B) =1y =1— my, leading to the result

dlogmy
dlogx

<m(l - my). ®)

Note the similarity of the right hand side of (8) to the derivative of a Hill
function, (6). A key consequence of the support bound is that the
effective Hill coefficient Heg is always bounded by the size of the
support m (Methods).

Comparison to the equilibrium case
To contextualize the support bound, it is valuable to compare to the
case of thermodynamic equilibrium, where exact, transparent for-
mulas for sensitivity are often available.

Kinetic schemes describing systems at thermodynamic equili-
brium must satisfy the principle of detailed balance**’, which is
equivalent to the following condition on the rates around any cycle of
distinct states 1>2>3->...i>1):

Wl Wy ©)

WipWpy--- Wy

For any binding scheme, no matter how complicated, that satisfies

detailed balance, the sensitivity to the ligand concentration x is given

by a simple expression. If X is a set of states of interest, and X is its

complement (the set of states not in X), then we have (Supplementary
Note 1)

dlogn
dlong = [(np)x — (Mp)g] A — my),
Heff

10)

where (n,,), (resp. (n,)y) is the expected number of ligands bound,
conditional on the system being found in one of the states of X
(resp. X).
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The right hand side of (10) cannot exceed n(1 — mry), where n is the
maximum possible number of ligands that can be bound. Therefore,
comparing to the sensitivity of a Hill function (6), we see how this
formula (10) refines the observation that, at thermodynamic equili-
brium, the effective Hill coefficient cannot exceed the number of
binding sites.

The support bound does not require detailed balance, and so it
applies to models of nonequilibrium systems. In the form (8), we can
compare it directly to (10). We will see that the size of the support m
can considerably exceed the number of binding sites n, and that this
enhanced sensitivity is achievable by nonequilibrium schemes.

Nonequilibrium MWC and the flagellar motor

Now we turn to bacterial chemotaxis, where the support bound sheds
light on the (possibly nonequilibrium) mechanism underlying the
sensitive directional switching of the flagellar motor.

In the chemotaxis system of E. coli, an array of receptors senses
the chemical environment of the cell and controls the intracellular
concentration of the phosphorylated protein CheY-P. In turn, the
CheY-P concentration controls the direction of rotation of the flagellar
motors of E. coli—determining whether the bacterium “runs” or
“tumbles.” The relationship between [CheY-P] and the fraction of the
time a motor rotates clockwise, mcw, is known to be an extremely
sensitive one, with studies**® over time reporting increasingly large
Hill coefficients, as experimental techniques have more fully isolated a
single motor’s “input-output relation”. Recent measurements, due to
Yuan and Berg*’, were fit well to a Hill function with H=21.

The underlying mechanism generating this sensitivity is unknown,
but is thought to involve the binding of CheY-P to some of the ~ 34 FliM
protein subunits of the motor, promoting clockwise rotation. There
have been several equilibrium models of cooperative binding pro-
posed for this, including, notably, the Ising-like conformational spread
model*,

But for any equilibrium model, including the conformational
spread model, (10) predicts that the Hill coefficient for directional
switching is given by the difference in the mean number of bound
CheY-P molecules in the clockwise (CW) and counterclockwise (CCW)
rotation states. Fukuoka et al.*” measured a quantity very much like
this—finding an average of 13 CheY-P molecules are bound when
the motor rotates CW, compared to an average of only 2 bound
during CCW rotation. This measurement may be mixed up with
intrinsic fluctuations of [CheY-P], but even allowing for this, the dif-
ference of these numbers ~11 should still exceed the Hill coefficient
(Supplementary Note 2), contradicting the finding H =21 of Yuan and
Berg. A nonequilibrium mechanism is needed to reconcile these
observations.

Other lines of evidence, including observations of the statistics of
the time spent in the CW or CCW states between switching events, also
point to a nonequilibrium mechanism***°. Tu' proposed a simple
nonequilibrium model for directional switching. The model, illustrated
in Fig. 1c, is a kinetic scheme with the structure of an MWC model—
coupling the binding of n ligands (CheY-P) to a global (i.e., concerted)
transition between the two motor states (CW or CCW)—except that
detailed balance is broken.

Tu assumed a particular form for the rate constants in the model,
but here we relax the choice of rate constants, and ask what sensitivity
is possible in models with this general, “nonequilibrium MWC” struc-
ture. By counting the green states in Fig. 1c, we see that m=2n for
models in this class. Therefore, the support bound (taking X=CW in
(8)) constrains the sensitivity of the clockwise bias mcw to changes in
the CheY-P concentration, x=[CheY-P], as

dlogmqy

dlog[CheY-P] <2n(1 — mey),

an

or Hegr < 2n. This bound can be approached arbitrarily closely in an
appropriate limit of transition rates (Supplementary Note 3). In fact,
Tlcw can be seen to approach a Hill function with H=2n, mew(x) > x>/
(K*+x™), saturating (11).

In models of this form, n is the difference between the largest and
smallest possible number of bound ligands. For a model of the flagellar
motor, the simplest interpretation is that n =34, the number of FliM
subunits. However, Fukuoka et al. found that very high FliM occu-
pancies were rare. If it were the case that the number of bound CheY-P
molecules were constrained to never leave the range 2-13, then we
could take n=13 -2 =11. 2n=22 would then be suggestively close to
the Hill coefficient measured by Yuan and Berg"’. However, we cannot
exclude the possibility that transient passage through rare states could
have an outsized effect on sensitivity. What (11) says is that to explain a
Hill coefficient of 21 using a model of this form, it is necessary to allow
for a range of least n=11 in the number of ligands bound.

Proofreading and sensing

Next, we consider the application of the support bound to kinetic
proofreading (KP)*" and to the problem of sensing chemical con-
centrations. These seemingly distinct scenarios are very similar in
mathematical structure?. The support bound refines known limits for
KP schemes® and yields constraints on the accuracy of chemical sen-
sing by a nonequilibrium receptor?..

To frame our discussion of KP, consider an enzyme £ that can bind
either of two very similar substrates present at equal concentrations—a
“right” one R and a “wrong” one W. Suppose the enzyme-substrate
complex EW has a free energy larger than that of ER by a small amount
AkgT. Then, at thermodynamic equilibrium, the so-called error fraction
n=[EW]/[ER] equals the Boltzmann factor =5 = exp(—A).

KP is a nonequilibrium kinetic scheme, illustrated in Fig. 1d, that
can enrich ER over EW, amplifying the effect of the small energy dif-
ference A, while otherwise treating R and W exactly the same. The
degree of this amplification can be quantified by a sensitivity—the
“discriminatory index” v, introduced by Murugan®:

_ dlog(EWI/IER) _  dlog(EW)/ED

12
dA dA )

which is of a form we can constrain with the support bound (7), taking
x = exp(A). At equilibrium, we must have v=1. For the scheme in
Fig. 1d, the size of the support is the number of bound states of W that
can dissociate, so m =2, and we get v < 2. This upper limit v-> 2 can be
approached for an appropriate choice of transition rates, corre-
sponding to Hopfield’s result that the error fraction can approach b’

The support bound also recovers the limits of discrimination in
more general KP schemes, as studied by Murugan®®. The class of
generalizations we consider is illustrated in Fig. 2a. We consider any
scheme whose states can be divided into two sets X and Y, such that the
transitions depending on the parameter x are exactly those crossing
Yto X.

The KP interpretation of Fig. 2a is that somewhere in X there is a
state that represents the unbound enzyme £, and somewhere in Y'there
is a state that represents a bound state EW. Somewhere along the paths
between these states, there are transitions that cross, in Murugan’s®
language, a “discriminatory fence” and depend on x = exp(A). Mur-
ugan focused on the number c of transitions crossing this “fence,” and
found v < c. The support bound (7) tells us instead to count the number
m of “boundary states” from which these crossing transitions emanate
from, yielding v < m < c. Saturation of this bound is possible by the
“ladder”-like multi-step proofreading schemes discussed in ref. °.

Harvey et al.” sought to understand universal constraints on
sensing chemical concentration by studying a model of a general
nonequilibrium receptor, illustrated in Fig. 2b. This has exactly the
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Fig. 2 | Common structure of proofreading and sensing models. a Murugan’s
generalized proofreading scheme®, where the key assumption is that there is a
“discriminatory fence” dividing the states into two halves, and every transition
depending on the energy difference A crosses this fence. We are showing just half
of a symmetric kinetic scheme—restricting attention to the part of the graph on
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which v depends, which is just the reactions involving bound states containing W
(neglecting the totally analogous ones involving R). b The general receptor model
used in ref. ?' to study the sensing of a ligand concentration has the same structure,
with the separation between the bound and unbound states of the receptor playing
the role of the “fence”.

same structure as Murugan’s general KP schemes. X now corresponds
to states in which the receptor is not bound to a ligand (nonsignaling
states), and Y corresponds to those when it is (signaling state), and
X =, the concentration of the ligand being sensed.

The key question in sensing is how well ¢ can be estimated. The
accuracy is related to a sensitivity that we can constrain using the
support bound. To see how this can work, suppose a cell’s surface is
covered by a number Ry of identical, non-interacting receptors each
modeled by (the same) scheme in the form of Fig. 2b, and that they
relax to a steady-state distribution over their states subject to fixed
external ligand concentration x = c. Now consider the number r of the
receptors that are in a “signaling state” (one of the states in the set ), at
one particular instant. For the sake of example, this will be our
“readout™ from which we wish to construct an estimate ¢ of c. The
mean of r is a function of c given by f(c) = R7iry(c), and if it is invertible,
we could take &=£"1(r). The error in an estimate so constructed can,
under certain assumptions, be approximated as

,_Varc_ Varr
€ =

¢ 2 2
(% 2 (dny
(e

13)

Now, r is a binomial random variable, so Var r=R;m/1-my), and
the derivative in the denominator we can bound in terms of the size of
the support, m,

dm, _ dmy

“dc dlogc

<mmy(1—-my) (14)

leading to a lower bound on the sensing error in terms of the support:

1 4
Rrm2my(1—my) ~ Rym?’

€2

as)

The larger the support, the higher is the achievable sensitivity and the
lower is the achievable sensing error.

Unordered binding and nested hysteresis

Finally, we turn to the application of the support bound to models in
which identical ligands bind, in any order, to n distinguishable binding
sites. In this case, we will see that the support bound gives a limit on
sensitivity that is exponential in n. We find that this remarkable sen-
sitivity can in fact be achieved, by a nonequilibrium mechanism we call
nested hysteresis.

The motivating example in this section will be the regulation of a
gene by the binding of copies of a transcription factor (TF) to multiple
sites along a DNA molecule (Fig. 3a). Gene expression can be strikingly
sensitive to TF concentration. For example, in the Drosophila embryo,
an exponentially decaying spatial gradient of the TF called Bicoid is
transformed into a sharply sigmoidal pattern of Hunchback gene
expression across the embryo™>*. These observed patterns can be fit
to a Hill function with H~5-77%??*, Many authors have proposed to
explain this as a consequence of equilibrium cooperative binding to
5-7 Bicoid binding sites**>, but this picture is at least clouded by
recent theory and experiments which found effects of binding site
deletions that were contrary to equilibrium expectations””. And
indeed, especially in eukaryotes, there are many avenues by which
energy may be expended in gene regulation, breaking detailed
balance™.

Inspired by this example, Estrada et al.” asked what rela-
tionships between TF concentration and gene expression could
arise from the binding of TFs to distinguishable sites, in any
order, without assuming detailed balance (Fig. 3a). In unordered
binding, each of n binding sites can be occupied or not, inde-
pendently of the others, so there are 2" possible states in the
kinetic scheme. The allowed transitions are those involving the
binding or unbinding of single TF molecule, resulting in a
hypercube graph of states and transitions (illustrated in Fig. 3b
for n=3). The binding transitions are assumed to have rates linear
in the TF concentration, x, and all other transition rates are
independent of x.

What does the support bound say about sensitivity in such
models? The support of the perturbation of x in the case of
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Fig. 3 | Unordered binding. a A gene may be regulated by the binding of tran-
scription factors (TFs) to some number n of sites. The most general case is that of
unordered binding to distinguishable sites. The TFs might bind in any order, and

b

the rates ko, and ko of binding and unbinding may be different for each site and
depend on the occupancy state of all the other sites. b The graph of states and
transitions for unordered binding of n=3 copies of a ligand.

unordered binding consists of every single state of the system,
except for the fully bound state, in which every binding site is
occupied and no more binding can occur. Therefore, the size of
the support is m=2"-1 and the support bound implies, for
example,

dlogmy _

dlogn: < (' =11 -, (16)

where m,; is the steady-state probability of the fully bound state—
which, following ref. 7, could be identified with the level of gene
expression in a picture where transcriptional activation requires
binding at all n sites. As discussed earlier, we may also say, more
roughly, that Heer < 2" — 1. Can such exponential-in-n sensitivity actually
be achieved? We find that it can be, by a simple mechanism—nested
hysteresis—that we describe in the next paragraph. And in fact, by a
small further elaboration of the mechanism, it appears that m,; (viewed
as a function of the ligand concentration x), can be made as close as
desired to a Hill function with H=2"-1.

There are two key ingredients in nested hysteresis. Suppose
the binding sites are numbered: 1, ..., n. The first ingredient is a
hierarchy of timescales, such that binding and unbinding to each
successive (higher-numbered) site is much slower than to the
(lower-numbered) one before. The second ingredient is a simple
rule restricting when binding and unbinding can occur—binding to a
site can only happen when all the lower-numbered ones are bound,
and unbinding from a site can only happen when all lower-
numbered ones are unbound. When binding or unbinding at a site
can occur, they occur at some rate and we suppose the ratio of these
rates equals x (as if working in units where the dissociation constant
equals one).

These rules gives rise to a nested structure, where the dynamics at
each binding site depend only on lower-numbered ones. The iterative
construction of a kinetic scheme realizing this mechanism for any n—
incorporating an explicit scale factor s giving rise to the required
timescale separation in the limit s > «—is illustrated in Fig. 4a. Typical
stochastic dynamics of this scheme for n=3 and a finite value of s are
shown in Fig. 4b, illustrating its hallmarks—the hierarchy of timescales,
and the dependence of the dynamics of higher-numbered sites on the
occupancy of the lower-numbered ones.

In the limit of strong timescale separation, we can analytically find
the steady-state distribution of nested hysteresis. We give here an
intuitive argument, and provide more careful arguments in Supple-
mentary Note 4. To begin, we start by considering the first binding site.
This site is independent of all the others, and the ratio of the binding
rate to the unbinding rate is x, so the steady-state probability that the

first site is bound is

m (site 1isbound) = % 17)

By assumption, binding to the second site can only happen
when the first is bound. And, since (again, by assumption) there
is a strong timescale separation between these two sites, this
amounts to an effective rate of binding to the second site of
kx x mr(site 1isbound) = % where k is a constant that will drop out.
Unbinding happens at an effective rate of k x mr(site 1is bound) = %
From this it follows that

2

n(site 2isbound) = lf—

= 18)

Importantly, it is also a consequence of the timescale separation
that the sites behave as though they are independent at steady state, in
the sense that the probability both are bound is the product of the
probabilities that each one is, so that

2
n(sites 1and 2 are bound) = <$) ( X > . 19)

1+x2

Now, since binding to the third site can only happen when the first
two are bound, we can iterate this argument, leading to (i.e., by
induction),

21'71

n(site i is bound) = n (20)

foralli=1,..., n, from which we can find the steady-state probability of
any occupation state of the sites, including the fully bound state, which
has probability

n_ 42t x2'-1
my =n(allsitesbound)= | | —— = ——. 1
all [11 1 +X2 1 j;:z]lxj )

This expression saturates (16) only when m,, is very small, and
it is not a Hill function. However, we can get one if we now stabilize
the two extreme occupation states—the fully bound and totally empty
states—by slowing the rates of all transitions leaving them. We
can accomplish this by scaling the exit rates from these states by a
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a .- n=2
B

0.0 02 0.4 0.6 0.8 1.0

time
Fig. 4 | Nested hysteresis. a Iterative construction of the kinetic scheme of nested
hysteresis, generalizable to any value of n. In each diagram, the gray ovals indicate
the subsystems (corresponding to binding and unbinding to the first n -1 sites),
which are assumed to relax much faster than the other transitions. b Occupation
over time for each of n =3 binding sites (black, blue, and orange), in a particular

00 05 10 15 20 25 30
X

stochastic realization of nested hysteresis (parameters: n=3, s=10, x =2). Dotted
arrows in the schematic indicate the pattern of influences between the binding
sites. ¢ Illustration of a parameter choice (inset, color indicates rate—magenta =10*,
blue =100, cyan =1) for which the dependence on x of the probability of the fully
bound state approaches a Hill function with H=7 very closely.

factor of g, leading to

n
x2 -1

Lrg(S 2w ot

T = (22)

which approaches a Hill function with H=2"-1as g > 0, and saturates
support bound (16) for all values of m,; simultaneously. Further details
can be found in Supplementary Note 4.

The possibility of exponential-in-n sensitivity—the optimal none-
quilibrium sensitivity achievable with unordered binding to n sites—
was missed in the prior numerical work’® which instead seemed to
suggest that, e.g., for n =3, Hegr < 5. An explicit parametric choice, for
the case n=3, approaching very close to the Hill function with
H=2%-1=7 s illustrated in Fig. 4c.

Do living things actually use a mechanism like nested hysteresis?
In our view, this is a very exciting open question raised by our work.
One place to look could be in the regulation of distant genes by TF
binding to enhancer sequences. Our understanding of mechanism
here remains unsettled. Equilibrium®® and nonequilibrium'”'® models
of enhancer action have been proposed recently, and the character
and role of enhancer-promoter loops remains under active experi-
mental study and debate™ .

As argued by Grah et al.”, focusing attention on mechanisms that
are optimal in some sense is one way to tackle the huge space of
candidate models for enhancers. Nested hysteresis is an example of a
“sensitivity-optimal” mechanism. And we note that at a very coarse
level, the necessary ingredients for nested hysteresis are present:
coordination of multiple enhancers at different genomic distances
from a promoter could supply the required nested hierarchy of time-
scales (e.g., ideal polymer looping times often scale like the length
squared®>®), and ATP-dependent loop extrusion® or chromatin
remodeling could provide the requisite nonequilibrium driving.

Discussion

The idea that structure determines function suffuses biology. In the
molecular realm, if the conditions of thermodynamic equilibrium
prevail, an important aspect of function, sensitivity, is tightly con-
strained by the most basic structural property—system size. This
general physical fact is most familiar in biophysics as the statement
that the Hill coefficient for equilibrium binding of a ligand cannot
exceed the number of binding sites.

But living things are not at thermodynamic equilibrium, and today
at the frontier of molecular biology we are increasingly led to consider
this in our models'". In this work, we have shown that a structural
feature of our models—the size of the support of a perturbation—
always limits the sensitivity, at or away from equilibrium. Considering
several contexts in which sensitivity is important, we show that our
findings unify and extend our understanding of diverse biophysical
examples. Table 1 summarizes these results.

Importantly, for any scheme the size of the support of any per-
turbation is less than the number of system states. This means that the
effective Hill coefficient is always less than the number of system
states. In the cases considered above, the bound in terms of the sup-
port is saturatable or “tight”—it can be approached as closely as desired
with an appropriate choice of transition rates.

The possibility of exponential-in-n sensitivity, revealed by nested
hysteresis, has implications for our understanding of biomolecular
“condensates”® %, aggregations of macromolecules increasingly
implicated in key biological processes. Some of the proposed func-
tions of these condensates, such as enhancing specificity of reactions
or signaling, amount to increasing the sensitivity to a small change in
chemical composition or concentration®’. This idea is well-grounded in
the familiar equilibrium logic (e.g., reflected in results like (10))—
achieving a switch-like response with, say Hes=100, requires the
cooperation of hundreds of molecules, as might be seen in a
condensate.
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Table 1| Support bound compared to the bounds on sensi-
tivity that hold at thermodynamic equilibrium (Eq.), for three
classes of models we have discussed

Model class Eq. bound Support bound Saturatable?
KP-like, n boundary states 1 n v
MWC-like, n sites n 2n v
Unordered binding, n sites n 2"-1 v

But nested hysteresis shows that the story is not quite complete—
away-from-equilibrium just e.g., 7 molecules could supply a sensitivity
that would require the cooperation of 127 =27 - 1 molecules at equili-
brium! The large size of a molecular aggregation cannot be accounted
for merely by postulating selection for sensitivity—some other cost or
constraint must also be part of the story.

One possibility is that the constraint is time. Perhaps all
mechanisms that achieve exponential-in-n sensitivity are just too slow
for many uses, whether the response to heat shock®®, or gene regula-
tion in a fast-dividing Drosophila embryo®. Nested hysteresis is “slow,”
in the sense that it demands a huge gulf between the fastest and
slowest rates in this system. Could there be, for any mechanism, a
“number-time tradeoff” for achieving a given sensitivity, where invol-
ving fewer particles to achieve a given sensitivity is possible but
requires more time? If such a law could be framed with the same
degree of generality as the support bound, it would be another pow-
erful tool to help us make sense of the nonequilibrium machinery
within living cells.

Methods
Logarithmic sensitivity, the Hill coefficient, and fold-change
amplification
Here we review the relationships between the logarithmic sensitivity
and other measures of sensitivity that might be reported or measured
in an experiment, especially “the Hill coefficient”.

If fix) were a Hill function (1), then

dlogfx) _
dlogx ~

KH
H <KH +XH) =H(1~fo0)). (23)
We note two simple facts about this expression. First, the logarithmic
sensitivity achieves its maximum value, H, when x (and so f(x)) is very
small. Second, at the midway point x = K, where df (x)/d log x reaches
its maximal value H/4, the logarithmic sensitivity is H/2.

As mentioned in the main text, in general, functions of interest will
not actually be Hill functions, but it is common nevertheless to reporta
Hill coefficient or an “effective Hill coefficient,” Hqr. There are several
different quantities—we will describe several below—sometimes called
the effective Hill coefficient, and which give Hei=H in the case of the
Hill function, but which in general are not equivalent. We will later see
that the size of the support bounds them all.

First, suppose f(x) is not a Hill function, but that it is known
exactly, or at least, we can find its derivative. Then one approach is to
define Hegr directly as the logarithmic sensitivity at some point, in
analogy to how H controls the sensitivity of the Hill function. For
example,

dlogf(x)

Hew=2 dlogx

(24)

x=x"

where X" is the value of x at which f(x) is halfway between the smallest
and largest value it can assume. This definition has been used to
quantify the sensitivity of non-Hill sigmoidal functions arising from
theoretical models (e.g., refs. 1°°),

In an experimental context, it is very common to fit a Hill function
to data (e.g., averaged observations) that are purported to reflect a
functional relationship f(x), and to report the fit parameter £ as the Hill
coefficient. Often this is informative, but as a matter of principle, two
functions can have radically different derivatives even if the function
values are very close everywhere (e.g., if one function exhibits very
high frequency but low amplitude oscillations). This means that, even
if the fit is very good, relations based on analogy to (6), such as that
H/2=dlogf(x)/dlogx at the midpoint, can fail dramatically.

A different measure of sensitivity—the amplification of a fold-
change in the input—provides a solution to this problem. Suppose that
for some value x, of the input parameter x, scaling by a factor a scales
the output by b, so flaxo) = bf(xo). Then the quotient log(b)/ log(a) can
be thought of as a discrete approximation of the derivative defining
the logarithmic sensitivity. And if f(x) is differentiable everywhere, then
by the mean value theorem, there must be a value x* of x for which

dlogf(x)
dlogx

_ logb

loga’ 25

x=x"

This means that careful measurement of any two points on the
input-output curve (x versus f{x)) witnesses the (local, infinitesimal)
logarithmic sensitivity somewhere. Importantly—unlike in the case of
fitting to a Hill function—if error in the measurements is very low, then
they are also telling us the derivative for some value of x very
accurately.

Equation (25) leads us to another common definition of the
effective Hill coefficient®”:

log 81
e 10g(S0.9/S01)" (20)
where Sg o and Sg; are the values of the input variable (in our case, x)
required to get 90% and 10% (respectively) of the maximum value of
the output variable (in our case, f(x)). Note that (26) is like (25) with
a=S0.9/So1and b=9. It implies that somewhere between Sp; and Sgo
there is a logarithmic sensitivity of Heg/2.

There is yet another common definition, specific to models of
binding. Suppose x is the concentration of a ligand and (n,)(x) is the
expected number of sites bound by a ligand out of a total of n possible
binding sites. It is common then, to take

@7)

_ d (np)
Her= Fiogx °8 <n - <nb>>’

or to report, as the Hill coefficient, the slope of a line fitted to x versus
((np))/(n — (np)) data on a log-log plot.

As mentioned above, all these definitions of H are inequivalent
in general. For example, for totally noncooperative binding to n=2
binding sites, we have (1) =1x 2x/(1+x)? + 2 x x*/(1+x)* = 2(x/(1 + x)). In
this case, (27) gives 1, as does (26), if we take fix) =(n,). However,
taking instead f(x) = (x/(1 +x))2 —the fraction of the time both sites are
occupied—we get Hegr=1.17 from (24) and Hegr=1.19 from (26).

Proof of the support bound

Here we give a proof of the support bound, (7). The technical tool we
rely on is the Markov chain tree theorem (MTT, also called “matrix-tree
theorem,” see refs. *7¢ for details), which gives an explicit algebraic
expression for the steady-state distribution  of a kinetic scheme in
terms of the spanning trees of the associated graph G:

w

M= jir (28)

spanning trees of G tree edgesi—j
oriented tok
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where Z is the normalization constant, and a spanning tree of G is a
connected subgraph of G that includes every vertex but has no cycles.
In words, the right hand side gives a recipe to find the steady-state
probability of a state k. It says to consider each spanning tree of G and
orient all its edges (choose their direction) so they point towards k,
which is called the root of the tree. Then, for each such oriented tree,
multiply together the transition rates associated to all its directed
edges. Then, add up the products so formed. The result is proportional
to 1, up to overall normalization.

The sum over spanning trees looks forbidding, but to prove the
support bound we rely on only two facts, which follow from (28)
simply. The first fact is that every term in that sum is a positive
monomial, being a product of nonzero transition rates. This means the
ratio of any positive observables is a ratio of polynomials in x:

Amax — fe. d Amax—Cmin fo i
(A)n _ Zi:amin kl—ﬂminx :Xamin_bmin Zi=0 k,-x 29
(B) brmax X Dinax—binin 1 yj (29)
n Zj:bmin Qj—bpy, 2% q;

where k; and g; are positive quantities that do not depend on x, and
Apnax> Amin» Dmax» and by, are nonnegative integers.
Differentiating this expression we find

dlog(A),/B)y _
T dlogx (@min = bmin)

" (Zo ikix! Efi"a“”“"fcbxf) (30)

Anax—Armi i b b -
Soimg Tkt e b g

The second term in brackets is not less than —b,,, + b,i, and not more
than @, — Amin, SO We get
b <dlog(A),,/<B)n <a b

a, < < —
max d Iogx max

min min* (31)
The second fact about (28) that we need is that each oriented
spanning tree has at most one directed edge emanating from each
vertex (it has none coming of its root). Recalling the definition of
support, it follows that each monomial in (28) picks up at most m
factors of x, where m is the size of the support of the perturbation. This
means a,,,, and b, are both no greater than m, which leads to

dlog(A),/(B),

dlogx =m. (32)

Proof that the effective Hill coefficient is bounded by size of
support

Here we show that the size of the support bounds the effective Hill
coefficient, for all three definitions given in the first section of the
Methods. In two cases, this is very easy—to see it for the “binding”
definition (27) of Hegr, we simply apply (7) with A=n, and B=n — n,. For
the definition (24), applying the corollary (8) is sufficient. It is hardest
to see that the size of the support bounds the effective Hill coefficient
when the latter is defined according to “nonlocal” definition (26)
(in the main text, reproduced here),

log(81)

Hygp=—-+"—7"—.
T 10g(S0.0/S01)

33)

Suppose we are interested in the sensitivity properties of a func-
tion f(x) which is positive, monotonically increasing in the parameter x,
and bounded above by a value f ,,,. These assumptions are effectively
required to be able to apply (26), e.g., because the definition pre-
supposes the existence and uniqueness of the values So; and Sy,

which, recall, are the values of the input variable x for which f(x)

achieves 10% and 90%, respectively, of its maximum range. We addi-

tionally suppose that f(x) is a positive observable of some kinetic

scheme, which implies that f,,, — f(x) is a positive observable as well.
The support bound then gives

fx)
leg max*f(x)> <m

dlogx

(34)
where m is the size of the support of the perturbation of x. Note that
since f(x) is increasing the left hand side is positive. Then, define
z=logx (we assume, as we do throughout this work, that x> 0), and
write zy; = log Sy ; and zg o = log Sy o. Now we integrate the inequality

X)
/.ZO"’ dLog miff()()) dz< /ZO9 mdz
dz "z ’

201

35)

which yields

0.9f 0.1f
lo (%)—Io (%)smz 4 36
& max — O'9fmax & max — O'lfmax ( 09 0'1) ( )

log(0.9/0.1) —10g(0.1/0.9) sm(z99 — Zo1) (37)

from which it follows that log(81)<mlog(Syo/So1), Which implies
Hegr < m, for the definition (26) of He, as desired.

Data availability
No datasets were generated or analyzed in this study.

Code availability

A Mathematica notebook’™ accompanying our discussion of nested
hysteresis in Supplementary Note 4 is available at https://github.com/
jaowen/nested-hysteresis.
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