
Thermodynamic bounds on ultrasensitivity in covalent switching
Jeremy A. Owen1,∗,†, Pranay Talla2,∗,‡, John W. Biddle3,§, Jeremy Gunawardena3,||

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
2Horace Greeley High School, Chappaqua, NY, USA
3Department of Systems Biology, Harvard Medical School, Boston, MA, USA

∗These authors contributed equally

†Current address: Department of Chemistry, Princeton University, NJ 08540, USA
‡Current address: Columbia College, Columbia University, New York, NY 10027, USA
§Current address: Holy Cross College, Notre Dame, IN 46556, USA

||Corresponding author: Jeremy Gunawardena (jeremy@hms.harvard.edu)

Dated: November 22, 2022

ABSTRACT

Switch-like motifs are among the basic building blocks of biochemical networks. A
common motif that can serve as an ultrasensitive switch consists of two enzymes
acting antagonistically on a substrate, one making and the other removing a covalent
modification. To work as a switch, such covalent modification cycles must be held
out of thermodynamic equilibrium by continuous expenditure of energy. Here, we
exploit the linear framework for timescale separation to establish tight bounds on the
performance of any covalent-modification switch, in terms of the chemical potential
difference driving the cycle. The bounds apply to arbitrary enzyme mechanisms, not
just Michaelis-Menten, with arbitrary rate constants, and thereby reflect fundamental
physical constraints on covalent switching.
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Introduction

The covalent modification cycle is a ubiquitous motif in biochemical networks. In this motif, a

forward modifying enzyme, E, covalently attaches a modifying group to a substrate, S, thereby

converting it from an unmodified state, S0, to a modified state, S1; and a reverse demodifying

enzyme, F , removes the modifying group, converting S1 back to S0 (Figure 1(a)). Phosphorylation

is one the best known forms of covalent modification but many others are known [33, 36, 46] and

new forms of modification continue to be uncovered [11]. The substrate, S, may be a protein, in

which case modifications are referred to as post-translational modifications, but they may also occur

on small molecules. For the modification cycles considered here, the modifying group is a small

chemical moiety obtained from a donor, such as a phosphate group obtained from ATP. Polypeptide

modifications, such as ubiquitin, require a more complex cascade of enzymes for covalent attachment

to their substrates and fall outside the scope of this paper.

The antagonistic structure of covalent modification cycles was difficult to understand at first—

why simultaneously attach a modifying group and also remove it?—and led to them being referred

to in the older literature as “futile cycles” [38]. In fact, the forward and reverse enzymes allow

the balance of S1 and S0, measured, for instance, by the ratio of their steady-state concentrations,

[S1]/[S0], to be maintained away from the value it would have at chemical equilibrium. In other

words, a covalent modification cycle can act as a switch (Figure 1(b)), in which the value of

[S1]/[S0] is modulated by changing the levels of the forward or reverse enzymes [15, 41]. The idea

of a biochemical switch becomes more natural in the context of cellular information processing and

such switches have been found to play key roles in signal transduction [7, 8, 43, 45], gene regulation

[6, 22], the cell cycle [14, 29], and metabolism [9, 21].

The operation of a covalent modification cycle relies on the continued presence of donor molecules

to provide modifying groups. The cycle is driven by the chemical potential difference between the

donor molecules, such as ATP, and the corresponding molecular residues after modification and

demodification, such as ADP and inorganic phosphate Pi. This chemical potential difference is

maintained by core metabolic processes within the cell. It is akin to a battery in an electronic

circuit and a modification cycle thereby operates away from thermodynamic equilibrium through

continuous dissipation of energy [16, 34].
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Figure 1: Covalent modification cycle. (a) Schematic of a phosphorylation-dephosphorylation
cycle in which kinase E modifies the substrate S by covalent addition of a phosphate group (brown
disc), donated by ATP, and phosphatase F removes the modification by hydrolysis to release
inorganic phosphate, Pi. S0 and S1 denote the unphosphorylated and phosphorylated forms of
S. (b) Covalent modification gives rise to a switch-like relationship between the total amounts of
enzymes, here of the kinase E, and the steady-state substrate concentrations, which we quantify
as illustrated by the sensitivity and dynamic range.

In seminal work, Goldbeter and Koshland performed a mathematical analysis of covalent mod-

ification cycles under the assumption of Michaelis-Menten kinetics for the modifying enzymes—

catalysis proceeds via a single intermediate enzyme–substrate complex and product formation is

irreversible [15]. The chemical reactions are:

E + S0 
 ES → E + S1

F + S1 
 FS → F + S0

(1)

where ES and FS are enzymatic intermediates. When substrate is relatively abundant so that

both enzymes are saturated, they found that this system can exhibit unlimited sensitivity to the

concentrations of the modifying enzymes. For example, the logarithmic sensitivity,

∂ log([S1]/[S0])

∂ logEtot

which we refer to hereafter as the sensitivity, can be made as large as desired, by varying rate

constants. By way of comparison, if the relationship between [S1]/[S0] and Etot were described by

a Hill function, xH/(1 + xH), then the maximum sensitivity would be the Hill coefficient H. A
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sensitivity greater than 1 is said to be “ultrasensitive” [12].

The unlimited sensitivity found by Goldbeter and Koshland is physiologically implausible. It

arises from the unrealistic assumption of irreversibility in the Michaelis-Menten reaction mecha-

nism in Eq. (1). Although such an assumption has been nearly universal in quantitative studies of

biochemical networks, it would have surprised Michaelis and Menten [18, 24] and its dangers have

been repeatedly pointed out [7, 27, 30]. In their in-vitro studies, Michaelis and Menten measured

initial reaction rates, when product was not present, so that irreversibility was a reasonable as-

sumption. But, since then, Eq. (1) has been widely used in contexts, such as modification cycles,

in which product is very much present and rebinding of product to enzyme is to be expected. Its

continuing use has sometimes been justified on the grounds that modification and demodification

reactions are often physiologically irreversible, in the sense that product is rarely converted back

into substrate. However, enzyme mechanisms typically involve greater complexity than the sim-

ple Michaelis-Menten mechanism, with multiple intermediates and routes [13], and they may be

physiologically irreversible despite product rebinding. The graph-theoretic linear framework for

timescale separation [17] allows realistic general reaction mechanisms to be analyzed in which such

distinctions can be made. In previous work, we have analyzed modification cycles with realistic en-

zyme mechanisms and derived formulas for their switching capability in the limit of high substrate

[9, 48]. The switching sensitivity is no longer unbounded but is now limited by the parameters of

the switch.

A further difficulty with the irreversibility of Eq. (1) is that it implies infinite entropy production.

In reality, every reaction is reversible, although physiological conditions may make the reverse rate

extremely low. As we will see below, it is the ratio of forward to reverse rates which yields the

finite rate of entropy production. The Michaelis-Menten mechanism is therefore unsuitable for a

thermodynamic analysis. Noting this, Qian [34] studied a minimal elaboration of the Goldbeter-

Koshland cycle, in which both enzymes follow a fully reversible Michaelis-Menten mechanism. This

mechanism still proceeds via a single intermediate complex but product can rebind. Qian found

the relationship between the chemical potential difference driving the cycle and figures of merit,

such as the sensitivity, of a switch based on the system.

In the linear framework, realistic enzyme mechanisms can be analyzed with reversibility as-

sumed throughout. We use this approach here to establish bounds on the switching dynamic range

4



and sensitivity (Figure 1(b)) of any covalent modification cycle in which the forward and reverse

enzyme each follow their own realistic enzyme mechanism. We also show explicitly that these ther-

modynamic bounds can be approached as closely as desired. Our work generalizes the analysis of

Goldbeter and Koshland [15, 16] and the subsequent work of Qian [34, 35], and reveals fundamental

physical constraints, free from restrictive enzymological assumptions.

Results

Covalent modification cycles

For present purposes, a covalent modification cycle is any chemical reaction network with mass

action kinetics, built out of any number of reactions of the form [42, 48]:

E + S0 
 (ES)i

E + S1 
 (ES)i

(ES)i 
 (ES)j

F + S0 
 (FS)i

F + S1 
 (FS)i

(FS)i 
 (FS)j .

(2)

Any such network can be viewed as a detailed realization of the schematic modification cycle

illustrated in Figure 1(a). This class of models encompasses the irreversible cycle studied by Gold-

beter and Koshland, but also much more biochemically realistic ones reflecting complex enzymology,

with any number of intermediates, and, in particular, the reversibility of enzymes.

The reactions Eq. (2) imply the conservation of the total concentration of substrate Stot:

Stot = [S0] + [S1] +
∑
i

[(ES)i] +
∑
j

[(FS)j ],
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as well as the total concentrations of both enzymes, Etot and Ftot:

Etot = [E] +
∑
i

[(ES)i]

Ftot = [F ] +
∑
j

[(FS)j ].

The assumption of mass-action kinetics gives a system of polynomial differential equations for

the time evolution of the concentration of each chemical species. The equations are arrived at by

summing the individual contributions to the rate of formation/destruction of each species due to

each reaction.

Given any fixed choice of rate constants and the conserved quantities Stot, Etot, Ftot, a covalent

modification cycle admits a unique steady state or dynamical fixed point [9]. This fact allows us to

view steady-state quantities, such as the steady-state value of the ratio [S1]/[S0], as functions of the

conserved quantities. For a general covalent modification cycle, the polynomial equations satisfied

at steady state, implicitly defining this functional relationship, can be very complicated—having

arbitrarily many terms and rate constants appearing in them. Nevertheless, they possess a basic

structure, set by the schema Eq. (2), that will enable us to apply a powerful algebraic approach—the

linear framework—to make general statements about them.

Background on the linear framework

Here, we briefly introduce the linear framework. In the following subsection, we will specialize to

the case of covalent modification cycles. The framework was introduced in [17]. A recent review

[28] discusses the material needed here and should be consulted for more details and background.

The framework revolves around finite, simple, directed graphs with labeled edges; an example

graph is shown in Figure 2(a). For the application considered here, the graph vertices, denoted

by 1, 2, · · · , n, represent chemical species, the edges, denoted i → j, represent reactions and the

labels, denoted `(i → j), represent positive rates with dimensions of (time)−1. The labels may be

algebraic expressions that include time-varying concentrations of chemical species. We will discuss

such labels further in the next section; for the present, to explain the machinery of the framework,

we regard the labels as constant symbols.
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Figure 2: Modeling enzyme mechanisms using the linear framework. (a) An example of a
linear framework graph. (b) An example of a realistic enzyme mechanism, in which two substrates
(ATP and S0) bind to an enzyme E in any order to form a ternary complex T , which is transformed
into a complex T ′ from which two products (ADP and S1) are released in any order. To be able
to model this mechanism using the grammar Eq. (5), the binding/unbinding of at least one of the
substrates and one of the products to the bare enzyme must come to a rapid equilibrium (denoted
by the gray ovals). (c) Subject to this timescale assumption, the network in (b) can be cast in
terms of the grammar Eq. (5). (d) A linear framework graph GE corresponding to the mechanism
shown in (c).
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Let G be a linear framework graph. Such a graph can be naturally given dynamics by assuming

that each edge is a chemical reaction with the corresponding label as the rate constant for mass-

action kinetics. Since an edge has only a single source vertex, the dynamics must be linear and is

therefore described by a matrix differential equation,

dx

dt
= L(G).x , (3)

where x = (x1, · · · , xn)T ∈ Rn is the time-dependent column vector of vertex concentrations (here,

T denotes transpose) and the linear operator, L(G), is the Laplacian matrix of G. Since material

is only moved around the graph, without being created or destroyed, there is a conservation law,

at all times, x1 + · · ·+ xn = xtot; equivalently, each column of L(G) sums to zero.

We will be concerned with steady states, x∗, of systems described by graphs, so that (dx/dt)|x=x∗ =

0. Accordingly, x∗ ∈ kerL(G). It can be shown that, ifG is strongly connected, then dim kerL(G) =

1. Recall that a graph is strongly connected if any two distinct vertices, i and j, can be connected

by a directed path, i = i1 → i2 → · · · → ik = j. A canonical basis element ρ(G) ∈ kerL(G) may be

determined in terms of the edge labels by using the Matrix-Tree Theorem (MTT) of graph theory

[19, 20, 25, 44]. If H is any subgraph of G, let w(H) denote the product of the edge labels over the

edges in H,

w(H) =
∏

i→j∈H
`(i→ j) .

Recall that a spanning tree is a connected subgraph of G that contains each vertex of G (spanning)

and has no cycles if edge directions are ignored (tree). It is said to be rooted at i if i is the only

vertex with no outgoing edge (which orients the tree). Let Θi(G) denote the set of spanning trees

of G that are rooted at i. Then, the MTT shows that,

ρ(G) =
∑

Ti∈Θi(G)

w(Ti) .

Since x∗ must be proportional to ρ(G) ∈ kerL(G), it is straightforward to obtain the ratio of steady

8



states in terms only of the edge labels,

x∗i
x∗j

=

∑
Ti∈Θi(G)w(Ti)∑
Tj∈Θj(G)w(Tj)

, (4)

and we will exploit this below.

Modeling a covalent modification cycle

In previous work, post-translational modification systems, like the covalent modification cycle of

Figure 1(a), were modeled as interacting systems of linear framework graphs [9, 48]. This approach

is also reviewed in [28], which may be consulted for more details. An important feature of this ap-

proach is that enzyme reaction mechanisms can be substantially more general than the conventional

Michaelis-Menten mechanism in Eq. (1), allowing in particular for reversibility and multiple inter-

mediate complexes and thereby addressing the problems described in the Introduction. Specifically,

an enzyme mechanism may be composed of any appropriate reactions from the “grammar”,

E + S∗ → Y∗ Y∗ → Y∗ Y∗ → E + S∗ , (5)

which transform between substrate and product. Here, we have used “∗” as a generic subscript to

avoid index proliferation. S∗ denotes a substrate form, such as S0 or S1 in Eq. (1), and Y∗ denotes

an intermediate complex, such as ES in Eq. (1). The only requirement we place on the mechanism

is that there must be no “dead-end” intermediate complexes that can be formed but not destroyed.

We will see that this amounts to supposing that a certain corresponding graph, described below,

is strongly connected.

The Michaelis-Menten mechanism in Eq. (1), or the reversible version used by Qian in [34], can

be constructed from the grammar in Eq. (5). But the grammar can also capture more complicated

mechanisms, such as the “random order bi-bi” mechanism [39] pictured in Figure 2(b), in which

an enzyme has two substrates that are bound in either order and forms two products that are

released in either order. Such mechanisms are important for forward modifying enzymes, like

kinases, which use a secondary substrate, like ATP, to donate the modifying group (Figure 1(a))

and release a secondary product, like ADP. Similarly, the enzyme mechanisms implied by the
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covalent modification cycle in Eq. (2) can also be accommodated in Eq. (5).

In order to cast realistic enzyme mechanisms in our grammar, we must make an approximation,

because in Eq. (5), substrates are not permitted to bind to intermediate complexes, so secondary

substrates cannot be explicitly represented. Instead, as explained in more detail in [48], we will

assume that secondary-substrate binding occurs as a “rapid equilibrium” with either the free enzyme

E or some intermediate complex Y∗, so that the concentration of the secondary substrate can be

absorbed into the appropriate rate constant. We additionally assume that the concentration of

this secondary substrate is held constant—a reasonable assumption in the case of many forward

modifying enzymes, especially kinases, where ATP concentration is held constant by background

metabolic processes despite fluctuations in demand. Subject to these assumptions, the mechanism

in Figure 2(b) can be well-approximated by the reaction network shown in Figure 2(c), which is a

realization of the grammar in Eq. (5).

Any mechanism for an enzyme E expressed in the grammar may be represented by a linear

framework graph GE (Figure 2(d)) in which the vertices are the free enzyme E and the intermediate

complexes Y∗, the edges correspond to the reactions in the mechanism and the labels correspond

to the reaction rates. The time-dependent concentrations of the substrate forms S∗ appear in the

labels for those edges in which a substrate form binds to the free enzyme. Accordingly, as can be

seen in the example in Figure 2(d), only those edges outgoing from the vertex E, which are colored

red, have edge labels depending on the substrate concentrations. In keeping with the reversibility of

the enzyme mechanism in Figure 2(c), every transition in the graph GE in Figure 2(d) is reversible.

We will always require that GE be strongly connected, and in particular that no intermediates form

irreversibly.

The linear Laplacian dynamics on GE , as given by Eq. (3), is merely a rewriting of the dynamics

of the enzyme mechanism under mass-action kinetics. But this construction will allow us to apply

the MTT (i.e. in the form Eq. (4)) to algebraically express the variables associated to the vertices

in terms of the edge labels.

The general form of the covalent modification cycle in Eq. (2) can easily be constructed within

the grammar in Eq. (5): it consists of two enzymes E and F , with arbitrary mechanisms obeying

the grammar Eq. (5), and two inter-converting substrate forms S0 and S1. The reverse modifying

enzyme, F , may follow a different mechanism to that of E. This is typically the case in reality,

10



as the removal of a modifying group is often a single-substrate hydrolysis reaction. The ability to

realistically represent the difference between the mechanisms of E and F is an important benefit

of our approach.

Applying the linear framework to a covalent modification cycle, we get two graphs: GE , whose

vertices are E and its intermediates, and GF , whose vertices are F and its intermediates. Since

[S0] and [S1] appear in the labels of the edges of GE and GF directed out of E and F , respectively,

they will also appear on the right hand side of Eq. (4), but they do so in a limited way. Specifically,

since each rooted spanning tree has at most one edge directed out of any vertex, they appear only

linearly. This observation leads to the following simple relations at steady-state [48]:

∑
i

[(ES)i]
[E] = [S0]

KE
0

+ [S1]

KE
1∑

j
[(FS)j ]

[F ] = [S0]

KF
0

+ [S1]

KF
1

(6)

where KE
0 ,K

E
1 ,K

F
0 ,K

F
1 are the total generalized Michaelis-Menten constants (tgMMCs) of the co-

valent modification cycle [42, 48]. The tgMMCs depend only on rate constants and have dimensions

of concentration.

Substituting expressions like Eq. (6) into the original polynomial steady-state equations yields

a similarly compact expression for the substrate ratio (Eq. (13), [48]):

[S1]

[S0]
=
cE0 [E] + cF0 [F ]

cE1 [E] + cF1 [F ]
(7)

where the quantities cE0 , c
E
1 , c

F
0 , c

F
1 are the total generalized catalytic efficiencies (tgCEs) of the

covalent modification cycle [42, 48]. These quantities depend only on rate constants, and have

dimensions of (concentration× time)−1.

The three conservation laws and the relations Eq. (6) and Eq. (7) can now be combined to yield

two equations involving only [S0] and [S1] as variables:

Stot = [S0] + [S1] + Etot

(
[S0]/KE

0 + [S1]/KE
1

1 + [S0]/KE
0 + [S1]/KE

1

)
+ Ftot

(
[S0]/KF

0 + [S1]/KF
1

1 + [S0]/KF
0 + [S1]/KF

1

)
, (8)

(
Etot

Ftot

)(
1 +

[S1]

KF
1

+
[S0]

KF
0

)(
cE0 [S0]− cE1 [S1]

)
=

(
1 +

[S0]

KE
0

+
[S1]

KE
1

)(
cF1 [S1]− cF0 [S0]

)
. (9)
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Figure 3: An example covalent modification cycle and the graph GSI . (a) A covalent
modification cycle where the enzyme E obeys the random order bi-bi mechanism from Figure 2
and the enzyme F acts by a reversible Michaelis-Menten mechanism. (b) The associated linear
framework graph GSI involving the substrates and the intermediates.

For the purposes of understanding the steady-state dependence of [S0] and [S1] on the conserved

quantities, all the possible complexity permitted by the schema in Eq. (2), and all the freedom to

choose rate constants, has been reduced to eight generalized parameters—the four tgMMCs and

the four tgCEs.

Thermodynamic constraints on the tgCEs

Now we turn to thermodynamics. We will assume from now on that every graph is reversible, in

the sense that, if i→ j, then also j → i. It is also important that the reverse edge j → i represents

the process that is the time-reverse of that represented by i → j and not just some other process

for returning from j to i [2].

At thermodynamic equilibrium, each reaction occurs with the same frequency as its time-reverse.

This principle of detailed balance [23] implies a relation between the rate constants of reactions

that form a cycle. Consider, for example, an arbitrary cycle of reactions in a covalent modification

cycle taking S0 to S1 via the enzyme E and back to S0 via the the enzyme F :

S0

k1[E]


k−1

(ES)1
k2


k−2

· · ·
 (ES)n
kn



k−n[E]
S1

q1[F ]


q−1

(FS)1 
 · · ·
q2


q−2

(FS)m
qm



q−m[F ]
S0.
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For this cycle, detailed balance at thermodynamic equilibrium implies that

k1k2 · · · q2qm
k−1k−2 · · · q−2q−m

= 1. (10)

Recall that some of the rate constants ki, qi appearing above may conceal concentrations of

cofactors we do not explicitly model. Holding these concentrations at fixed values away from their

equilibrium values drives the system out of equilibrium into a nonequilibrium steady state. The

log ratio of rates on the left hand side of Eq. (10)—known as the thermodynamic force, or cycle

affinity—quantifies the breaking of detailed balance and can often be identified as the entropy

produced in the environment when the cycle is traversed, in units of the Boltzmann constant, kB,

[10, 37, 40]. For a chemical system held out of equilibrium by the presence of species assumed to

have fixed concentration (either because there is a very large reservoir of them or because a fixed

concentration is actively maintained), this will depend on a chemical potential difference ∆µ. For

example, suppose E is a kinase and F a phosphatase, so that one complete realization of the cycle

entails the binding of one molecule of ATP, the release of one molecule of ADP, and the release of

one molecule of Pi. Then,

log

(
k1k2 · · · q2qm

k−1k−2 · · · q−2q−m

)
=
µATP − µADP − µPi

kBT
=

∆µ

kBT
≈ 20 to 30,

under typical physiological conditions. In this work, we focus on the natural case in which the

thermodynamic force is the same around any cycle in which E makes the modification of S and F

removes it. In that case, we can show that:

log

(
cE0 c

F
1

cE1 c
F
0

)
=

∆µ

kBT
. (11)

In the general case, where the force is different around different cycles, the left hand side is bounded

by the largest force. Without loss of generality, we take cF0 /c
F
1 < cE0 /c

E
1 so that ∆µ > 0.

Eq. (11) is the physical constraint on the parameters of a general covalent modification cycle

from which all our results descend. To prove it, it will be convenient to consider another kind of

linear framework graph, denoted GSI , whose vertices are the substrate forms and the intermediate

complexes. GSI is an amalgam of GE and GF together with the substrate forms S0 and S1 and
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Figure 4: Lifting the undirected spanning trees of GuSI . (a) The graph GuSI associated with
the covalent modification cycle of Figure 3, together with (b) an example spanning tree T of GuSI
and the associated directed spanning trees TS0 and TS1 rooted at S0 and S1, respectively.

it is more convenient for a thermodynamic analysis of the cycle.1 GSI is shown for an example

covalent modification cycle in Figure 3. GSI is strongly connected as long as GE and GF are

strongly connected, as we assume.

To prove Eq. (11), we begin with equation Eq. (7) from above, which says:

[S1]

[S0]
=
cE0 [E] + cF0 [F ]

cE1 [E] + cF1 [F ]
=
cE0 ([E]/[F ]) + cF0
cE1 ([E]/[F ]) + cF1

(12)

An alternative expression for this ratio can be obtained from the MTT applied to the graph GSI .

Since GSI is assumed to be reversible, it is helpful—to organize the expressions that arise from the

MTT—to consider undirected spanning trees in the corresponding undirected graph GuSI , which is

GSI , but with the directions of the edges ignored. Given any vertex i, any spanning tree T of GuSI

can be uniquely “lifted” to a directed spanning tree Ti rooted at i, and all rooted spanning trees

arise in this way.2 See Figure 4 for an illustration of this construction.

Applied to GSI , the MTT yields:

[S1]

[S0]
=

∑
T w(TS1)∑
T w(TS0)

where the sum is over the spanning trees of GuSI , and TS1 , TS0 are the directed spanning trees

rooted at S1 and S0, respectively.

Every spanning tree of GuSI contains a unique path between S0 and S1—if there were multiple

1GSI is distinct from the graph on the substrate forms introduced in prior work involving the linear framework
[48].

2In more detail, there is a bijection Φi,j : Θi(GSI) → Θj(GSI) between spanning trees rooted at any two vertices
i and j obtained by reversing all the edges along the unique directed path from j to i [47].
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paths, it would fail to be a tree, and if there were no path, the tree would fail to include every

vertex (it would fail to be “spanning”). Let U be the set of spanning trees where the path between

S0 and S1 involves intermediates containing E. Let V be the set of spanning trees where the path

between S0 and S1 involves intermediates containing F . Every spanning tree of GuSI lies in either

U or V , never both.

Furthermore, if T ∈ U , the weights w(TS0), w(TS1) must be linear in [E], because the directed

trees must leave S1 (resp. S0) by exactly one edge, and it must be an edge carrying [E] on its label

since T lies in U . Similarly, if T lies in V , the weights w(TS0), w(TS1) must be linear in [F ].

It follows that we can write

[S1]

[S0]
=

∑
T∈U w(TS1) +

∑
T∈V w(TS1)∑

T∈U w(TS0) +
∑

T∈V w(TS0)
=
A[E] +B[F ]

C[E] +D[F ]
=
A([E]/[F ]) +B

C([E]/[F ]) +D
(13)

where A, B, C, and D are positive constants that do not depend on [E] or [F ]. We also have

AD

BC
=
A[E]D[F ]

C[E]B[F ]
=

∑
T∈U w(TS1)

∑
T∈V w(TS0)∑

T∈U w(TS0)
∑

T∈V w(TS1)

To proceed, we need the following claim.

Claim 1. Suppose a1, b1, c1, d1, a2, b2, c2, d2 are nonzero real numbers such that

a1x+ b1
c1x+ d1

=
a2x+ b2
c2x+ d2

(14)

for all x. Then

a1d1

b1c1
=
a2d2

b2c2
.

Proof. Eq. (14) implies

(a1x+ b1)(c2x+ d2) = (a2x+ b2)(c1x+ d1).

Expanding yields (a1c2−a2c1)x2 +(a1d2−a2d1 + b1c2− b2c1)x+(b1d2− b2d1) = 0. Since this holds
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for all x, we find that b1d2 = b2d1 and a1c2 = a2c1. This means

1 =
b1d2

b2d1
=
a1c2

a2c1

from which the desired result follows by rearrangement.

Equating Eq. (12) and Eq. (13) and applying the claim yields

cE0 c
F
1

cE1 c
F
0

=

∑
T∈U w(TS1)

∑
T∈V w(TS0)∑

T∈U w(TS0)
∑

T∈V w(TS1)
.

Now let T be an tree of GSI and suppose that P is the unique directed path from S0 to S1

in TS1 . Let P ∗ denote the reverse directed path from S1 to S0. Then it is easy to see that

w(TS1)/w(TS0) = w(P )/w(P ∗). By assumption that the thermodynamic force is the same about

any cycle in our reaction network, this quantity depends only on whether T lies in U or V .

It follows that,

cE0 c
F
1

cE1 c
F
0

=
w(P )w(Q)

w(P ∗)w(Q∗)
,

where P is any directed path from S0 to S1 through the intermediates containing E, Q is any

directed path from S1 to S0 through the intermediates containing F , and P ∗, Q∗ are the respective

reverses of those paths.

Accordingly,

log

(
cE0 c

F
1

cE1 c
F
0

)
= log

(
w(P )w(Q)

w(P ∗)w(Q∗)

)
= log

(
w(C)

w(C∗)

)
where C is the directed cycle in GSI formed by the concatenation of P and Q. But the term

log
(
w(C)
w(C∗)

)
is exactly a log ratio of rates about a cycle, as we considered in our physical discussion

above. It is therefore equal to the thermodynamic force, or chemical potential difference ∆µ/kBT ,

holding the system out of equilibrium. This proves Eq. (11).

The dynamic range

The groundwork we have laid now allows us to establish bounds—in terms of ∆µ/kBT—on the

characteristics of a switch based on any covalent modification cycle, taking the “output” variable

of the switch to be the logarithm of steady-state ratio [S1]/[S0] and “input” variables to be the

16



conserved enzyme totals.

The simplest characteristic of a switch is the difference between the largest and smallest values

its output variable can assume—the dynamic range. From Eq. (7), we have:

log

(
cF0
cF1

)
< log

(
[S1]

[S0]

)
< log

(
cE0
cE1

)
(15)

and these limits can be approached—the larger when Ftot → 0 and the smaller when Etot → 0.

The dynamic range of the switch is then the difference of these extremes, which by Eq. (11), is

simply equal to ∆µ/kBT . In the special case where each enzyme forms only one intermediate

enzyme-substrate complex, this thermodynamic bound on the dynamic range was found by Qian

[34].

The high substrate regime

We now turn to the sensitivity of a switch—how sharply can the output respond to a small change

in the input? Our main result is that, in the limit where Stot is very large compared to the enzyme

totals Etot and Ftot and the generalized Michaelis-Menten constants, the sensitivity is bounded by

a simple function of the switch parameters. To be precise, the ratio [S1]/[S0] has a well-defined

limit as Stot →∞, and it is this limiting value, which depends on the rate constants and conserved

enzyme totals, whose sensitivity we bound:

∣∣∣∣ ∂

∂ logEtot
log

(
lim

Stot→∞

[S1]

[S0]

)∣∣∣∣ ≤
√
cE0 c

F
1 /c

E
1 c

F
0 − 1

2
. (16)

By Eq. (11), the right hand side can expressed in terms of the thermodynamic force alone:

∣∣∣∣ ∂

∂ logEtot
log

(
lim

Stot→∞

[S1]

[S0]

)∣∣∣∣ ≤ exp (∆µ/2kBT )− 1

2
. (17)

Eq. (17) is our main result. We note that in the limit of thermodynamic irreversibility ∆µ/kBT →

∞, the right hand side of Eq. (17) diverges, consistent with the finding of “unlimited” sensitivity

by Goldbeter and Koshland, as discussed in the Introduction.

To prove the bound Eq. (16), our starting point is Eq. (9). In prior work [9], it was shown that
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Eq. (9) implies the existence of the limit

σ = lim
Stot→∞

[S1]/[S0],

and that the limiting value σ is the unique positive solution of the quadratic equation (Eq. (18),

[9]):

Etot

Ftot

( 1

KF
0

+
σ

KF
1

)
(cE0 − cE1 σ) =

( 1

KE
0

+
σ

KE
1

)
(cF1 σ − cF0 ). (18)

This equation can be rearranged to express Etot
Ftot

as a rational function of σ,

Etot

Ftot
=

(
1
KE

0
+ σ

KE
1

)
(cF1 σ − cF0 )(

1
KF

0
+ σ

KF
1

)
(cE0 − cE1 σ)

,

with numerator and denominator both positive for any value of σ within the bounds on its value

set by our dynamic range result Eq. (15). This means Etot/Ftot can be viewed as a continuously

differentiable function of σ.

Rewriting Eq. (18) in terms of variables x = log
(
Etot
Ftot

)
and y = log σ, we have:

x = log (KE
1 +KE

0 e
y) + log (cF1 e

y − cF0 )− log (KF
1 +KF

0 e
y)− log (cE0 − cE1 ey) + log

(
KF

0 K
F
1

KE
0 K

E
1

)
.

Our goal is to bound the derivative dy/dx. We will do this by studying the derivative of the

inverse, which is:

dx

dy
=

 ey

ey − cF0
cF1

+
ey

cE0
cE1
− ey

+

 ey

KE
1

KE
0

+ ey
− ey

KF
1

KF
0

+ ey

 . (19)

The second term in brackets is the difference of two positive quantities no larger than one, so it

can be no smaller than −1. It approaches −1 when
KE

1

KE
0
→∞ and

KF
1

KF
0
→ 0.

The first term in brackets is minimized, for fixed values of the tgCEs, when y = log

√
cF0 c

E
0

cE1 c
F
1

,

when it takes the value

(√
cF1 c

E
0

cF0 c
E
1

+ 1

)
/

(√
cF1 c

E
0

cF0 c
E
1
− 1

)
.
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Therefore,

dx

dy
≥

√
cF1 c

E
0

cF0 c
E
1

+ 1√
cF1 c

E
0

cF0 c
E
1
− 1

− 1 > 0.

Since the function relating x and y is continuously differentiable and this derivative is never zero,

this implies

dy

dx
≤


√

cF1 c
E
0

cF0 c
E
1

+ 1√
cF1 c

E
0

cF0 c
E
1
− 1

− 1


−1

=

√
cE0 c

F
1 /c

E
1 c

F
0 − 1

2
.

which establishes Eq. (16). Finally, applying Eq. (11) yields Eq. (17). See Figure 5(a) for a numerical

illustration of this result.

In prior work, Qian [34]—studying a reversible covalent-modification switch with a single inter-

mediate for each enzyme—gave an asymptotic formula for the derivative ∂([S1]/Stot)/∂ logEtot, in

the high substrate regime and at a point where [S1]/Stot = 1/2. Starting from our Eq. (19), and

taking y = 0, we can develop a similar expression:

∂

∂ logEtot
log

(
lim

Stot→∞

[S1]

Stot

)
=

1

4

 1

1− cF0
cF1

+
1

cE0
cE1
− 1

+

 1
KE

1

KE
0

+ 1
− 1

KF
1

KF
0

+ 1

−1

,

when [S1]/Stot = 1/2. This result may be compared to Eq. (17) of Qian [34], but it is not equiv-

alent to it. Our equation reduces, under the multiple limits simultaneously taken by Qian, to

the thermodynamic parts of his expression. However, Qian’s equation additionally includes terms

proportional to 1/Stot, which cannot appear in our expression because we have already taken the

limit Stot →∞.

The low substrate regime

The sensitivity bound Eq. (17) for the high substrate regime can be viewed as a companion to a

corresponding result in the low substrate regime [32]:

∣∣∣∣ ∂

∂ logEtot
log

(
lim

Stot→0

[S1]

[S0]

)∣∣∣∣ ≤ tanh (∆µ/4kBT ) . (20)
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Note that the right hand side is less than 1: there can be no ultrasensitivity in the low substrate

regime. This result is a manifestation of a recently identified [32] universal thermodynamic bound

on the response of nonequilibrium systems to perturbations. It also follows directly from the

approach described here, as we now show.

In the limit where Stot is very small, we have [E] → Etot, [F ] → Ftot, which together with

Eq. (12) implies

lim
Stot→0

[S1]

[S0]
=
cE0 (Etot/Ftot) + cF0
cE1 (Etot/Ftot) + cF1

.

Let φ denote this limiting quantity and set z = Etot/Ftot. Taking the derivative, we find that

∂

∂ logEtot
log(φ) =

cE0 c
F
1 z − cF0 cE1 z

(cF0 + cE0 z)(c
F
1 + cE1 z)

=

(√
cE0 c

F
1 z −

√
cF0 c

E
1 z

)(√
cE0 c

F
1 z +

√
cF0 c

E
1 z

)
(cF0 + cE0 z)(c

F
1 + cE1 z)

.

Using the inequality of the arithmetic and geometric means,

(cF0 + cE0 z)(c
F
1 + cE1 z) ≥

(√
cE0 c

F
1 z +

√
cF0 c

E
1 z

)2

.

Recalling that tanh(x) = (e2x − 1)/(e2x + 1), we see that,

∣∣∣∣ ∂

∂ logEtot
log(φ)

∣∣∣∣ ≤
√
cE0 c

F
1 z −

√
cF0 c

E
1 z√

cE0 c
F
1 z +

√
cF0 c

E
1 z

= tanh

(
1

4
log

(
cE0 c

F
1

cF0 c
E
1

))
.

Finally, applying relation Eq. (11) yields Eq. (20). See Figure 5(b) for a comparison of this bound

to that for the high substrate regime. The bound on the sensitivity in the high substrate regime

is larger than the bound in the low substrate regime for all nonzero values of ∆µ/kBT . For small

∆µ/kBT , the two bounds are equal to first order.

Saturating our bounds

Remarkably, at any fixed force, there are covalent modification cycles that, with the same kinetic

parameters, can saturate either bound Eq. (20) or Eq. (17), as the substrate concentration is varied.

Maximal sensitivity, in both Stot regimes, can be achieved when the enzymes act as “mirrors” of

each other (i.e. the network is invariant under the exchange E ↔ F and S0 ↔ S1).
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Figure 5: Thermodynamic force bounds sensitivity. Numerical illustration of our bounds by
random sampling of rate constants for a covalent modification cycle in which both enzymes have
single intermediates (see Methods for details). (a) Points show values of the thermodynamic force
and sensitivity achieved when Stot = 20000 (red). In (b), the same is plotted together with Stot = 2
(green), and Stot = 0.01 (blue). In all cases Etot = Ftot = 1. These numerical results are compared
to the bounds Eq. (17) (solid red curve) and Eq. (20) (solid blue curve).

For example, consider a covalent modification cycle with cE0 = cF1 = exp (∆µ/2kBT ), cE1 =

cF0 = 1, and the “forward” generalized Michaelis-Menten constants KE
0 = KF

1 ≡ KM very small

compared to the “reverse” constants KE
1 = KF

0 ≡ KR. For such a covalent modification cycle,

Eq. (19) gives the maximal sensitivity in the high Stot regime explicitly as:

exp (∆µ/2kBT )− 1

2
× 1 +KM/KR

1 + exp (∆µ/2kBT )KM/KR
,

saturating our bound Eq. (17) when KR � KM . For the same parameters, in the low Stot regime

we have

[S1]

[S0]
≈ cE0 (Etot/Ftot) + cF0
cE1 (Etot/Ftot) + cF1

=
exp (∆µ/2kBT ) (Etot/Ftot) + 1

(Etot/Ftot) + exp (∆µ/2kBT )
,

leading to a maximal sensitivity of tanh (∆µ/4kBT ), saturating the low Stot bound Eq. (20). These

results are illustrated in Figure 6.
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Figure 6: The same parameter choice can saturate the low and high Stot bounds. Sen-
sitivity bounds in the high (solid red line) and low (solid blue line) Stot regimes compared to the
sensitivity (colored points) evaluated at Etot = Ftot = 1 for a covalent modification cycle with
KE

0 = KF
1 = 10−4, KE

1 = KF
0 = 103, cE0 = cF1 = exp (∆µ/2kBT ), cE1 = cF0 = 1. Points corre-

sponding to Stot values of 100, 1.75, 1, and 0.01 are colored red, light green, dark green, and blue,
respectively.

Discussion

The bounds we have presented provide a quantitative picture of how general covalent modification

cycles are constrained by thermodynamics. We have framed our results in term of the chemical

potential ∆µ, which is the nonequilibrium driving force of the system, and is a natural way to

quantify the energetic requirements of the switch. To see this, it is important to note that there

can be no direct trade-off between the rate of (free) energy expenditure—the power—and steady-

state properties of the system like its sensitivity or dynamic range. This is because the power

can be scaled arbitrarily by scaling all reaction rates by the same constant, or, equivalently, by

rescaling time, whereas this operation leaves the steady state completely unchanged. To compare

it to steady-state quantities, power must be divided by some other rate relevant to the system. The

quantity ∆µ is equal to the energy consumed per cycle completion, i.e., it is the power divided by

the rate of cycle completion.

Our results highlight the fact that under common circumstances, thermodynamics does not

tightly constrain the sensitivity of biochemical switches. For example, in a phosphorylation-
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dephosphorylation cycle driven by ATP hydrolysis, typical physiological values of ∆µ ≈ 20−30 kBT

are deep in the saturated regime of the low Stot bound, and in the high Stot case, lead to a max-

imum possible sensitivity of ∼ 104 to 106, far in excess what is needed to account for typical Hill

coefficients measured in ultrasensitive systems [12]. The sensitivity of such strongly driven switches

may be constrained by other factors, such as kinetics or the abundance of substrate.

Our bounds also show that, from the perspective of making a good switch based on covalent

modification, enzymological complexity provides no benefit. No matter the number of enzymatic

intermediates or how elaborate their reactions, the same thermodynamic bounds on sensitivity

hold. This is in contrast to numerous examples in biophysics where having more states or “steps”

provides some advantage. For example, in kinetic proofreading, having more proofreading steps

allows for a degree of discrimination that can never be achieved with fewer, even as ∆µ → ∞

[26, 31, 32]. As another example, the maximum possible coherence of biochemical oscillations is

conjectured to depend strongly on the number of states available, together with the strength of

nonequilibrium driving [3].

A number of basic questions remain. First, what is the bound on sensitivity in terms of ∆µ and

Stot? We have only studied the limiting cases in which substrate is very scarce or abundant. It is

natural to conjecture that the maximum possible sensitivity is increasing in Stot, and that therefore

our high substrate bound Eq. (17) in fact holds for all Stot.

Second, in this paper we have focused on steady-state behavior. It would be very interesting to

also understand the constraints on the transient behavior. For example, in vision, the exceptional

amplification that enables rod cells to respond one or a few photons involves a transient response

of a modification cycle involving rhodopsin and transducin, driven by GTP hydrolysis [1, 5].

Finally, we note that even simpler properties of general covalent modification cycles remain

incompletely understood. For example, to our knowledge, it remains an open problem to prove the

monotonicity of the steady-state ratio [S1]/[S0] as a function of the enzyme totals. Such matters may

at first seem only of mathematical interest, but we think understanding them carefully could bear

fruit—especially in the study of systems, such as signaling cascades, in which covalent modification

cycles appear as parts [4].
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Methods

To generate Figure 5, the sensitivity was evaluated numerically for the simplest reversible covalent

modification cycle

E + S0

a
�
b
ES

c
�
d
E + S1

F + S1

s
�
r
FS

q

�
k
F + S0

for random choices of the rate constants a, b, c, d, s, r, q, and k. Explicitly, for the Stot = 20000

(red) and Stot = 2 (green) points, all rate constants were drawn uniformly from the interval (0, 10)

except for d and k which were drawn uniformly from (0, 0.1). For the Stot = 0.01 (blue) points,

all rate constants were drawn uniformly from the interval (0, 10) except for d and k which were

drawn uniformly from (0, 0.5). The polynomial equations defining the steady state where solved

numerically (using NSolve in Wolfram Mathematica), and the derivative defining the sensitivity at

Etot = Ftot = 1 was estimated by taking a finite difference. For this covalent modification cycle,

∆µ/kBT = log
( acsq
bdrk

)
.

To generate Figure 6, Eq. (8) and Eq. (9) were solved numerically, with KE
0 = KF

1 = 10−4,

KE
1 = KF

0 = 103, cE0 = cF1 = exp (∆µ/2kBT ), cE1 = cF0 = 1, and varying values of Stot. The

sensitivity at Etot = Ftot = 1 was estimated by taking a finite difference.
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