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Background: Covalent modification cycles are widely used as regulatory switches.
Results: Mathematical analysis reveals, under very general assumptions, an unavoidable trade-off between switching efficiency
and cell-to-cell coherence.
Conclusion: Enzyme bifunctionality offers a way to circumvent this trade-off.
Significance: This may explain the bifunctionality of PFK-2/FBPase-2 in controlling the switch between glycolysis and gluco-
neogenesis in the mammalian liver.

Covalent modification provides a mechanism for modulating
molecular state and regulating physiology. A cycle of competing
enzymes that add and remove a single modification can act as a
molecular switch between “on” and “off” and has been widely
studied as a core motif in systems biology. Here, we exploit the
recently developed “linear framework” for time scale separation
to determine the general principles of such switches. These
methods are not limited to Michaelis-Menten assumptions, and
our conclusions hold for enzymes whose mechanisms may be
arbitrarily complicated. We show that switching efficiency
improves with increasing irreversibility of the enzymes and that
the on/off transition occurs when the ratio of enzyme levels
reaches a value that depends only on the rate constants. Fluctu-
ations in enzyme levels, which habitually occur due to cellular het-
erogeneity, can cause flipping back and forth between on and off,
leading to incoherent mosaic behavior in tissues, that worsens as
switching becomes sharper. This trade-off can be circumvented if
enzyme levels are correlated. In particular, if the competing cata-
lytic domains are on the same protein but do not influence each
other, the resulting bifunctional enzyme can switch sharply while
remaining coherent. In the mammalian liver, the switch between
glycolysis and gluconeogenesis is regulated by the bifunctional
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/
FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2
complements the metabolic zonation of the liver by ensuring
coherent switching in response to insulin and glucagon.

An enzyme-catalyzed modification cycle is illustrated in Fig.
1A. The forward enzyme, E, catalyzes the covalent addition of
an M moiety (phosphoryl, methyl, acetyl, etc.), carried by
the donor, D-M, to form the modified substrate, S1, from the
unmodified substrate, S0. The reverse enzyme, F, catalyzes the
removal of M, returning S1 to S0. Background metabolic pro-
cesses continually replenish D-M from D and M. The substrate,
S, can be any molecule, protein or otherwise.

Such cycles can function as biological switches, in which the
proportion of S1 at steady state can be varied from low (“off”) to
high (“on”) by altering properties of the cycle, such as the
enzyme levels (1, 2). They are regarded as core motifs in cellular
information processing (3, 4) and have been the subject of much
analysis (5–9).

Application of these results to specific biological examples
has been hampered, however, by the universal assumption that
the enzymes E and F follow the Michaelis-Menten mechanism
(Fig. 1B, left) (10). Michaelis and Menten (10) measured
enzyme rates with minimal product present and could thereby
assume an irreversible mechanism, with no product inhibition.
This is no longer valid for the enzymes in a modification cycle,
in which product concentrations may be substantial. It has been
known for some time that ignoring such issues can yield mis-
leading results (11, 12). Enzymes can also have multiple inter-
mediate enzyme-substrate complexes, not just one, as assumed
by Michaelis and Menten (10). In particular, enzymes that cat-
alyze forward modifications have two substrates (Fig. 1A), and,
depending on the order in which they bind to the enzyme, addi-
tional intermediate complexes may be present, giving rise to
mechanisms more like that shown on Fig. 1B, right (13). These
problems are well understood for individual enzymes (14) but
have not been addressed in multienzyme biological systems, of
which the covalent modification cycle is the simplest example.

We have recently developed a “linear framework” for time
scale separation (15–18), which enables us to address these
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issues (13); for an overview, see Ref. 19. This approach offers
capabilities beyond the scope of numerical simulation and
allows general principles to be distilled irrespective of the under-
lying details and of the numerical values of the parameters. We
exploit this framework here to characterize in quantitative terms
the switching behavior of any modification cycle, no matter how
complicated the individual enzyme mechanisms. We derive for-
mulas for the transition point, the sharpness, and the range of a
switch and show that, to be efficient, the enzymes in the switch
must operate as irreversibly as possible. We point out a fundamen-
tal trade-off: the sharper the switch, the less coherence between
different cells in a population. We discuss how this trade-off can be
circumvented and focus on the particular strategy of forming a
single bifunctional enzyme, with two independent catalytic
domains, in place of two monofunctional enzymes.

Of particular interest in the light of this analysis is the mam-
malian bifunctional enzyme 6-phosphofructo-2-kinase/fruc-
tose-2,6-bisphosphatase (PFK-2/FBPase-2),6 which imple-
ments glucose homeostasis by the liver. Here, the modified
substrate is a small molecule that is an important allosteric reg-
ulator of glycolysis and gluconeogenesis. Our results suggest
that bifunctionality is essential to allow glucose homeostasis to
work coherently in the liver in response to hormonal signals.

EXPERIMENTAL PROCEDURES

Catalytic Mechanisms of PFK-2/FBPase-2—The enzymatic
mechanisms of the kinase and phosphatase domains of PFK-2/
FBPase-2 are known in detail (20). The kinase domain follows
an ordered, sequential reaction, with the binding of ATP being
required for the binding of F6P. Phosphate is directly trans-
ferred from ATP to F6P, without the formation of a phos-
phorylated enzyme intermediate. F2,6BP is then released first,
followed by ADP. This gives Reaction 1,

X � ATP º
a1

b1

X � ATP

X�ATP � F6P º
a2

b2

X � ATP�F6P

X�ATP�F6P ¡
c1

X � ADP�F2,6BP

X�ADP ¡
r1

X � ADP

REACTION 1

Here, X denotes bifunctional PFK-2/FBPase-2. Intermediate
complexes are indicated by a dot between the components.

The phosphatase domain first binds F2,6BP in its active site,
transfers the 2-phosphate to His-258 (residue positions are

given for the rat liver B1 isoform), and then releases F6P. The
phosphohistidine is then hydrolyzed, releasing inorganic phos-
phate. This gives Reaction 2,

X � F2,6BP º
a3

b3

X � F2,6BP

X � F2,6BP ¡
c2

X � P � F6P

X � P ¡
r2

X � Pi

REACTION 2

The maximal velocity, Vmax, and the concentration at which
half-maximal velocity is reached, S0.5, have been measured for
each domain of PFK-2/FBPase-2 on its own. Reported values
differ widely, due to differences in assay design and/or enzyme
purity and stability. Values for both the unphosphorylated
Ser-32 (insulin high) and the phosphorylated Ser(P)-32 (gluca-
gon high) states of the rat liver B1 isoform, based on uniform
preparations and assay conditions, have been reported in Ref.
21, and these are used here (Table 1). Similar measurements for
the reverse directions of the two domains are not readily avail-
able. Early measurements, undertaken before the catalytic
mechanisms were determined, reported no reversibility but
some product rebinding for the phosphatase reaction (22) and
mild reversibility for the kinase reaction, to about 2% of the
forward reaction (22, 23). The modern consensus seems to be
that neither the kinase nor the phosphatase is readily reversible
under realistic conditions (24). We were also unable to find
generally accepted values for the reverse binding affinities, for
either the Ser-32 or Ser(P)-32 conditions, and therefore we
assumed that there was no product rebinding. This implies strong
irreversibility, in the sense of (13), as described in the text.

The mechanisms in Reactions 1 and 2 can be accommodated
in the reaction “grammar” used here, as described in Ref. 13.
Donor molecules (ATP) and their breakdown products (ADP
and Pi) are taken to be in rapid equilibrium with the enzymes to
which they bind. This allows, for instance, the [X�ATP] coming
from Reaction 1 to be replaced by [X][ATP](a1/b1). The kinase
reactions may then be rewritten as shown in Reaction 3,

X � F6P L|;
a2

*

b2

Y1 ¡
c1

X � F2,6BP

REACTION 3

where a2
* � [ATP](a1/b1)a2 and Y1 is the intermediate complex

X�ATP�F6P in Reaction 1. The phosphatase reactions may be
rewritten similarly as shown in Reaction 4,

X � F2,6BP º
a3

b3

Y2 ¡
c2

X � F6P

REACTION 4

6 The abbreviations used are: PFK-2/FBPase-2, 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase; F2,6BP, fructose 2,6-bisphosphate; F6P, fruc-
tose 6-phosphate.
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where Y2 is the intermediate complex X�F2,6BP in Reaction 2.
Because we have assumed strong irreversibility, for the reasons
discussed above, both Reactions 3 and 4 turn out to be standard
Michaelis-Menten mechanisms. However, there is no difficulty
with accommodating product rebinding or reversibility if new
data become available.

Estimation of Rate Constants—The Vmax and S0.5 reported in
Table 1 are aggregated parameters that can be expressed in
terms of the underlying rate constants in Reactions 1 and 2 by
using the King-Altman procedure (14). We note in passing that
the King-Altman procedure also follows from the linear frame-
work (17). The Vmax values in units of milliunits/mg were con-
verted to effective catalytic rate values, kcat

* , in units of s�1 using
the definition of 1 unit � 1 �mol of product/min and assuming
a molecular mass of 54.76 kDa for the bifunctional monomer.
Here, * � E for the kinase domain and * � F for the phosphatase
domain. The King-Altman formulas for a two-substrate reac-
tion, given in Table 6.1 of Ref. 14, were adapted for nonrevers-
ible catalysis and release. For an ordered sequential mechanism,
as in Reaction 1, the effective catalytic rate is given by kcat

E �
c

1
r1/(c1 � r1). In the absence of information on the relative val-

ues of c1 and r1, it was assumed that c1 � r1, allowing both to be
determined from kcat

E . The S0.5 for the first substrate, ATP, is
given by c1r1/(a1(c1 �r 1)), allowing a1 to be determined. For a2,
we noted that association constants are always bounded below
by the corresponding kcat

E /S0.5, while a widely used diffusion-
limited upper bound for small molecules binding to proteins in
solution is 108 M�1 s�1 (14). We therefore set a2 to 2000 times
kcat

E /S0.5(F6P) to get a value in the range 5–20% of the diffusion
limit. The S0.5 for F6P is given by r1(b2 � c1)/(a2(c1 � r1)), from
which b2 was calculated. The only remaining rate constant is b1.
No formula exists for the nonreversible case from which this
can be calculated. Accordingly, we approximated the S0.5 for
ATP binding by its binding constant, S0.5(ATP) � b1/a1, from
which b1 was obtained. A similar approach was taken for the
phosphatase reactions in Reaction 2. Having calculated the cor-
responding kcat

F value, as above, it was assumed that c2 � r2, and
the formula kcat

F � c2r2/(c2 � r2) was used to obtain both c2 and
r2. The value of a3 was taken to be 20% of the diffusion limit, as
the phosphatase is thought to be quite efficient. Finally, the
formula for F2,6BP binding, S0.5 � (b3 � c2)r2/(a3(c2 � r2)), was
used to calculate b3. These rate constant values for the individ-
ual domains in Reactions 1 and 2 are listed in Table 1.

Numerical Simulation—The reactions for bifunctional PFK-
2/FBPase-2 were constructed in the little b computational envi-
ronment, developed in independent work (25). Little b is a mod-
ular construction tool that enables the reactions for the
bifunctional enzyme to be automatically generated from those
for each catalytic domain in Reactions 1 and 2, assuming that
the domains operate independently of each other. The corre-
sponding differential equations for mass action kinetics and the
MATLAB code for numerically integrating these equations are
then automatically generated from the reactions. This greatly
reduces inadvertent errors, but the MATLAB code was also
manually inspected for correctness.

The rapid equilibrium assumption for donor molecules is
difficult to implement numerically. Instead, we clamped ATP
concentration throughout at 3 mM, corresponding to a reported

physiological level (26). We initiated the simulations with total
PFK-2/FBPase-2 at 1 �M, entirely in the free form, and a spec-
ified concentration of free F6P, with all other components
absent. Numerical integration was performed using ode15s in
MATLAB. The AbsTol of the integration was reduced from its
default value to 10�10, for the phosphorylated enzyme (Ser(P)-
32) case, or 10�12, for the unphosphorylated enzyme (Ser-32)
case, to ensure that concentrations of all minor species were
accurately tracked. This was particularly important at high lev-
els of total fructose. The RelTol was reduced from its default
value to 10�7. As a control on the integration, total fructose and
total enzyme were checked at each time point and were typi-
cally conserved to within 0.01% and better, except at very high
total fructose levels when they could only be held to within
0.1%. Steady states were detected by running the numerical
integration until the levels of each species appeared to stabilize
and then checking the numerical value of each species manually
over a range of time points.

Sensitivity Analysis—For each of the 10 rate constants, a1, a2,
a3, b1, b2, b3, c1, c2, r1, and r2, from Reaction 1 and 2, a value was
picked independently and randomly from a log-normal distri-
bution whose mean was the corresponding value in Table 1 and
whose standard deviation was 1. With this procedure, c1 � r1
and c2 � r2, which relaxes one of the assumptions made above
in estimating the rate constants. There are two sets of rate con-
stant values in Table 1, one each for Ser-32 and for Ser(P)-32,
and the random selection was done twice around each set of
mean values.

According to the King-Altman procedure used to estimate
the rate constants in Table 1, the effective catalytic rates of the
PFK-2 and FBPase-2 domains are given by kcat

X � ciri/(ci � ri),
where i � 1 for the PFK-2 domain (X � E) and i � 2 for the
FBPase-2 domain (X � F). The ratio kcat

F /kcat
E corresponds to the

transition point sharpness t* in the mathematical analysis.
Because of the way in which the rate constant values have been
randomly chosen, some sets of rate constants have t* �1, and
others have t* �1. If the steady-state behavior is insensitive to
the choice of rate constant values, we would expect the slopes of
F6P and F2,6BP to be 0 and 1, respectively, for the first case and
1 and 0, respectively, in the second case, irrespective of whether
the rate constant values are chosen around the Ser-32 or
Ser(P)-32 mean values.

For each set of randomly chosen rate constant values, the
total enzyme concentration was chosen randomly from the uni-
form distribution in the interval [0.1d,0.9d], where d � (kcat

E /
kcat

F )(b2 � kcat
E )a2 was found to avoid enzyme saturation. Total

fructose was started at 0.5 mM and increased in steps of 0.1 mM.
The initial condition was always that total enzyme was appor-
tioned entirely to free enzyme; total fructose was apportioned
entirely to F6P, and all other components were absent. The
differential equations were numerically integrated using MAT-
LAB’s ode15s. For the initial exploration, AbsTol was reduced
to 10�12 and RelTol to 10�7. As a check on the integration, total
enzyme and total fructose were calculated, and their standard
deviations over all time steps never went above 10�10. Steady
states were found by integrating until a range of time steps was
reached over which the standard deviation of the logarithm of
each variable was less than 10�7. Steady-state [F6P] and
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[F2,6BP] as a function of total fructose were fitted to a straight
line, and the coefficient of determination (i.e. the square of the
Pearson correlation coefficient), R2, was used to check good-
ness of fit. R2 � 0.95 was regarded as a “good fit.” This entire
procedure was then repeated for 10,000 choices of rate constant
values for both Ser-32 and Ser(P)-32 mean values. Ninety seven
hours were required for Ser-32 and 40 h for Ser(P)-32 on Har-
vard Medical School’s Orchestra computing cluster.

The [F6P] and [F2,6BP] graphs were very well fitted to
asymptotic straight lines. For Ser-32, with total fructose in the
range 1.5–3 mM, R2 � 0.95 for the [F6P] slope for all but 36 rate
constant selections and for the [F2,6BP] slope for all but five
selections. Each of these 41 selections either had t* very far from
1 or had t* very nearly 1. For these selections, the simulations
were re-run with AbsTol reduced further to 10�13 and RelTol
reduced to 10�11 and, when t* � 1, with total fructose in the
range 4.5– 8 mM in increments of 0.1 mM. This increased R2

above 0.97 for all 41 selections. For Ser(P)-32, with total fruc-
tose in the range 2–5 mM, R2 � 0.95 for the [F6P] slope for all
but 139 rate constant selections and for the [F2,6BP] slope for
all but 14 selections. The R2 values for all these 153 selections
could be increased above 0.96 by improving the integration as
before. In summary, for all 20,000 rate constant selections, the
goodness of fit to a straight line for both [F6P] and [F2,6BP]
could be made greater than 0.95 by sufficiently stringent
numerical integration.

RESULTS

Existence of an Algebraic Invariant Relating S0 and S1—In
previous work (13), we have used the linear framework men-
tioned above to analyze complex enzyme mechanisms, allowing
for reversibility and the existence of multiple intermediate
complexes (Fig. 1B). The same implicit assumptions were made

as in all previous work on modification and demodification;
synthesis and degradation were assumed sufficiently slow that
the system was closed, with conserved substrate and enzyme
totals, whereas donor molecules and their breakdown products
(Fig. 1A, D-M, D and M) were assumed to be kept at constant
concentrations by background metabolic processes and there-
fore ignored as dynamic variables (13).

It was shown that provided an enzyme subscribes to a general
reaction grammar (13), which allows for instance, for all known
protein kinases and phosphoprotein phosphatases, and no mat-
ter how complicated the reaction mechanism, the quasi-steady-
state behavior can be summarized by four generalized parame-
ters: two total generalized Michaelis-Menten constants and two
total generalized catalytic efficiencies, one of each kind of param-
eter relating to the enzyme’s normal substrate and the other of
each kind to its normal product (Fig. 1C). For the Michaelis-Men-
ten mechanism, the conventional Michaelis-Menten constant and
catalytic efficiency (sensitivity constant) are related through a well
known formula (14), but this is no longer the case for the general-
ized parameters of more complicated mechanisms, which must be
treated as independent parameters.

The generalized parameters permit the cycle behavior at
steady state to be summarized in an algebraic “invariant” that
relates the steady-state concentrations of the two substrate
forms, [S0] and [S1] (Fig. 1D). To derive this invariant, Equation
13 in Ref. 13 can be rewritten as Equation 1,

c1
F	S1
 � c0

F	S0


c0
E	S0
 � c1

E	S1

�

	E


	F

(Eq. 1)

where c*
X is the generalized catalytic efficiency in Fig. 1C and

then combined with Equation 18 of Ref. 13.

FIGURE 1. Covalent modification cycle and its steady-state behavior. A, schematic of a covalent modification cycle on a single site. B, examples of enzyme
mechanisms that are accommodated by the general reaction grammar described in Ref. 13; on the left is the standard Michaelis-Menten reaction scheme, and
on the right is a reaction scheme for a two-substrate enzyme with a random-order Bi-Bi mechanism (such as a kinase in which ATP and the substrate to be
phosphorylated can bind in either order and the reaction products can be released in either order). C, enzyme mechanism parameterization. The subscript of
each parameter, either 0 or 1, refers to the relevant substrate, S0 or S1, respectively. The enzymes can have complicated mechanisms involving multiple
intermediate enzyme-substrate complexes and be fully reversible, as in B. D, steady-state invariant relating S0 and S1, whose derivation is explained in the text.
[X] denotes the steady-state concentration of X.
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In the resulting invariant in Fig. 1D, all variables other than
[S0] and [S1], such as intermediate complexes, have been elim-
inated, although their influence continues to be felt in the alge-
braic structure of the invariant and in the generalized parame-
ters. Invariants have previously been found to concisely capture
key properties of biochemical systems (13, 27–29).

Because we have assumed, as mentioned above, that synthe-
sis and degradation are sufficiently slow that they can be
ignored, the total amounts of substrate, Stot, and enzymes, Etot,
Ftot, are conserved quantities that do not vary dynamically.
They play a similar role to the parameters but differ in nomi-
nally being under experimental control. A striking feature of
the invariant is that the relationship between [S0] and [S1]
depends only on the ratio, Etot/Ftot, and not on the individual
enzyme totals. This will play an important role in the analysis
that follows.

The invariant holds for any modification cycle, no matter how
complicated the individual enzyme mechanisms. Differences
between enzyme mechanisms appear in how the generalized
parameters in Fig. 1C are algebraically determined by the underly-
ing biochemical rate constants (13). The invariant thereby sum-
marizes the behavior of an infinite class of molecular systems.

Cycle Equations in the High Substrate Limit—If Etot, Ftot, and
Stot are varied, the steady-state concentrations of the two sub-
strate forms, [S0] and [S1], will also vary. This may give the
impression that [S0] and [S1] can be treated as mathematical
functions of Etot, Ftot, and Stot. However, this conclusion is not,
in general, valid. A steady state is a function of the initial con-
ditions from which the system is started, which may eventually
lead, as the system changes dynamically over time, to a steady
state. Different initial conditions may have the same conserved
totals but yield different steady states, a phenomenon known as
multistability (15, 30). A steady state cannot then be a mathe-
matical function of the conserved totals.

A central result, proved in the “Appendix,” is that this prob-
lem does not arise for the covalent modification cycle, no mat-
ter how complicated its enzymes. Any such cycle is monostable;
it has only a single steady state for any choice of conserved
totals. Accordingly, the steady state, and particularly the quan-
tities [S0] and [S1], can be regarded as functions of Stot, Ftot, and
Etot. It is then mathematically legitimate to consider the limit, as
total substrate increases, of the proportion of total substrate in
each modification state. The existence of these limits is also
proved in the “Appendix.”

This novel limiting procedure is the essential step in our
treatment because it greatly simplifies the mathematical analy-
sis. However, it also raises the question in any experimental
context of the interpretation of high substrate levels, an issue
that will be addressed when we consider the applications of the
results that follow.

The limiting procedure reduces the system to two equations
in the two quantities, u0 � limStot3∞ [S0]/Stot and u1 �
limStot3∞ [S1]/Stot. Because the amount of any intermediate
complex is bounded above by the total amount of its respec-
tive enzyme, the conservation law for substrate simplifies in
the limit to Equation 2,

u0 � u1 � 1 (Eq. 2)

while the invariant itself simplifies in the limit to Equation 3,

t��u1 � �u0��u0 � �u1� � �u0 � �u1��u1 � 	u0�

(Eq. 3)

Here, we have set t � Etot/Ftot and introduced the following
notation

� �
K0

E

K1
F, � �

K1
F

K0
F, � �

c1
E

c0
E, 	 �

c0
F

c1
F, � �

c0
EK0

E

c1
FK1

F (Eq. 4)

These five nondimensional parameters are more informative
than the eight dimensioned parameters in Fig. 1C. � and �
determine the relative strength of the forward and reverse bind-
ing affinities for E and F, respectively, whereas � and 	 deter-
mine the relative strength of the reverse and forward catalytic
efficiencies for E and F, respectively. When the enzymes are
biased toward their normal directions, the binding affinity for
normal substrate is higher (K0

E � K1
E and K1

F � K0
F) so that �,�

�1 and the catalytic efficiency for making normal product is
higher (c0

E � c1
E and c1

F � c0
F) so that �,	 �1. The parameter �

differs from the others in relating E to F. It acts like a scale
factor. Equations 2 and 3 fully describe cycle behavior in the
high substrate limit.

Discrimination and Sharpness Require Irreversibility—Cova-
lent modification cycles act as information-processing
switches. The switch is off when u1 is low and on when u1 is
high, and the switch can be moved back and forth between
these limits by changes in the amounts of the enzymes or in the
values of the rate constants. One requirement for a good switch
is that off and on should be well discriminated. Although nom-
inally 0 
 u1 
 1, the rate constants may confine u1 to only part
of this interval. The range of u1 is easily calculated from Equa-
tions 2 and 3 as given in Equation 5 and proved in the
“Appendix.”

max u1 � min u1 �
1

1 � �
�

	

1 � 	
(Eq. 5)

The range depends only on the catalytic efficiency ratios � and
	 and is plotted in Fig. 2A as a function of these quantities.
When both enzymes are perfectly reversible, with efficiency
ratios of 1, the range of u1 collapses to a single point (u1 � 0.5),
corresponding to thermodynamic equilibrium. Discrimination
is lost, and the switch carries no information. In contrast, if both
enzymes are perfectly irreversible, with efficiency ratios of 0, u1
can utilize the entire interval between 0 and 1. For maximal
discrimination, a cycle should operate as irreversibly as possi-
ble, with both enzymes far from equilibrium.

A second requirement for a good switch is a sharp transition
between off and on, to “throw” the switch. The transition
occurs at u1 � 1/2 and it follows from Equations 2 and 3 that
this is when t � t*, where t* is given by Equation 6,

t* �
�1 � ���1 � 	�

��1 � ���1 � ��
(Eq. 6)

If t � t*, then u1 � 1/2 and the switch is on; if t � t*, u1 � 1/2 and
the switch is off. One measure of sharpness is the rate of change
of u1 as a function of t, du1/dt, evaluated at the transition point
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given by Equation 6. This measure resembles a Hill coefficient. As
proved in the “Appendix,” its value is given by Equation 7,

��1 � ��2�1 � ��2

4��� � ���1 � ���1 � 	� � �� � 	��1 � ���1 � ���

(Eq. 7)

Provided the enzymes are biased toward their normal direc-
tions, the sharpness is maximized when both enzymes are per-
fectly irreversible (Fig. 2B). We see that sharpness, as well as
discrimination, is improved by operating the enzymes as irre-
versibly as possible. The importance of nonequilibrium mech-
anisms for cellular information processing has been observed
previously (31). The thermodynamic aspects of modification
cycles have also been previously analyzed (8, 32).

In their classic study, Goldbeter and Koshland (2) found that,
in the language of this study, the sharpness of switching
becomes infinite for enzymes that follow Michaelis-Menten
mechanisms. When the enzymes are (perfectly) irreversible,
c1

E � c0
F � 0, so that � � 	 � 0, and, according to Equation 7, the

sharpness is then given by Equation 8,

��1 � ��2

4���1 � �� � ��1 � ���
(Eq. 8)

However, this quantity remains bounded provided all parame-
ters are positive. The discrepancy with Goldbeter and Koshland
(2) arises because, in addition to being irreversible (product
cannot be converted back to substrate), the Michaelis-Menten
mechanism is also strongly irreversible (product does not
rebind to enzyme) (13). This distinction is irrelevant for the
Michaelis-Menten mechanism but becomes significant for
mechanisms with multiple intermediates. When strongly irre-
versible, K1

E and K0
F, which determine the affinity of rebinding,

become infinite and � � � � 0. The denominator in Equation 8
becomes 0 and the transition becomes infinitely sharp. The
infinite ultrasensitivity shown by Goldbeter and Koshland (2)
holds for strongly irreversible enzymes but fails otherwise, as

conjectured previously (13). We see that infinite ultrasensitivity
depends not on irreversibility per se, as formerly thought, but
on absence of rebinding.

Trade-off between Sharpness and Coherence—The switch
transition point, t*, given by Equation 6 depends only on the
parameters and, through them, on the underlying biochemical
rate constants of the two enzymes. If t � Etot/Ftot is greater than
t*, u1 � 1/2 and the switch is on, whereas if t is less than t*, u1 �
1/2 and the switch is off. Moreover, the sharper the switch, the
more abrupt is the change between on and off as t crosses the
transition point. Protein levels can fluctuate widely even within
a clonal population of cells; immunohistochemical staining
reveals long tailed distributions of protein levels that are well
fitted to log-normal distributions (33, 34). In contrast, bio-
chemical rate constants are expected to remain constant
between cells, so that the transition point, t*, is constant across
a cell population or tissue. If the enzyme levels fluctuate inde-
pendently, then t could flip back and forth across the transition
point from cell to cell, creating mosaic behavior within a tissue,
with some cells off and others on. Such incoherence would only
be amplified as the switch gets sharper, so that there is a trade-
off between switching sharpness, on the one hand, and cell-to-
cell coherence, on the other hand. Because of the generality of
our results, this trade-off emerges as a fundamental property of
any covalent modification cycle.

The incoherence in switching does not come from intrinsic
noise due to low molecular numbers (5). It arises within deter-
ministic, macroscopic dynamics from extrinsic noise in initial
conditions (i.e. total enzyme levels). It therefore remains signif-
icant even when molecular numbers are high, as in the example
of glucose metabolism discussed below.

Bifunctionality Circumvents the Trade-off—Equation 6 also
suggests how this trade-off can be circumvented. If enzyme
levels are maintained close to a fixed stoichiometry, so that t
remains approximately constant from cell to cell, then incoher-
ence could be avoided without sacrificing sharpness. This

FIGURE 2. Range and sharpness are maximized when both enzymes are perfectly irreversible. A, range of u1 given by Equation 5 is plotted as a function
of the relative catalytic efficiencies, � and 	. The enzymes are assumed to be biased in their normal directions, so that 0 � �, 	 � 1, as shown, with 0 being
perfect irreversibility. The maximum range is attained when both enzymes are perfectly irreversible. B, sharpness of switching given by Equation 7 is plotted as
a function of the relative catalytic efficiencies, � and 	, with the relative binding affinities set to � � � � 0.1. The units on the vertical axis are omitted, as
Equation 7 shows that the sharpness can be rescaled by �, which reflects the relative strength of the two enzymes. As long as the enzymes are biased in their
normal directions, with 0 � �, 	 � 1 as shown, maximum sharpness is attained when both enzymes are perfectly irreversible. A proof is given in the “Appendix.”

A Fundamental Trade-off in Covalent Switching

MAY 9, 2014 • VOLUME 289 • NUMBER 19 JOURNAL OF BIOLOGICAL CHEMISTRY 13015



might be achieved by co-regulating the expression or degrada-
tion of the enzymes or by bringing them together through scaf-
folding or in a complex so that their relative concentrations are
kept in balance. We consider here an extreme case of complex
formation in which the two catalytic domains are placed on the
same protein to form the bifunctional enzyme E  F in such a
way that the domains do not influence each other.

Intuitively, a substrate form, S0 or S1, should not care
whether the domain to which it binds is part of a monofunc-
tional or a bifunctional enzyme, as long as the other domain
does not influence the binding. Accordingly, in so far as binding
is concerned, the two monofunctional enzymes should behave
identically to the bifunctional enzyme with independent
domains. However, there are also intermediate complexes and
catalysis to consider, as shown in Fig. 3, in which we have
assumed, for the purposes of illustration, that E and F both have
reversible Michaelis-Menten mechanisms, with intermediate
complexes ES0 and FS1 and rate constants k1, . . . , k8, for mass
action kinetics.

We see from Fig. 3 that the reactions in which the bifunc-
tional enzyme E  F engages can be reorganized in terms of two
formal enzymes U and V, and two corresponding formal
enzyme-substrate complexes, US0 and VS1. Here, “formal”
means a combination of separate molecular species. Because
the two catalytic domains are assumed to operate indepen-
dently of each other, these formal species participate in identi-
cal formal reactions to the separate enzymes, with identical rate
constants, as shown in the boxes in Fig. 3. Accordingly, the
differential equations governing the variables S0, S1, E, F, ES0,
FS1 on the left in Fig. 3, and those governing the variables S0, S1,
U, V, US0, VS1, respectively, on the right are identical. The key
distinction between the two monofunctional enzymes, E and F,
and the single bifunctional enzyme, E  F, is that the latter
satisfies the additional conservation law Utot � Vtot, as verified
on the bottom right of Fig. 3. It is proved in the “Appendix” that
this equivalence between two monofunctional enzymes and
one bifunctional enzyme with independent domains holds no
matter how complex the individual reaction mechanisms.

It follows that the switching analysis above can be directly
applied to E  F. Fluctuations in enzyme levels no longer have
any effect on t, which remains always at 1, and do not affect
whether the switch is on or off. This now depends only on
whether t* is greater than or less than 1, with the value of t*
being determined by the rate constants of the enzymes through
Equation 6. Bifunctionality allows the trade-off to be effectively
circumvented and for control of the switch to pass from enzyme
levels to enzyme rate constants.

PFK-2/FBPase-2 Implements This Strategy—An example of
such a bifunctional mechanism is found in the regulation of
glucose homeostasis by the mammalian liver. The endocrine
hormones insulin and glucagon orchestrate the switch between
glucose consumption by glycolysis and glucose production by
gluconeogenesis as depicted in Fig. 4A (35, 36). The switch is
implemented by the terminal metabolite, F2,6BP, which is
reversibly produced from fructose 6-phosphate (F6P) by the B1
isoform of the bifunctional enzyme PFK-2/FBPase-2 (20, 37,
38). F2,6BP allosterically activates 6-phosphofructo-1-kinase
(PFK-1) and allosterically inhibits fructose-1,6-bisphosphatase,
the key enzymes in glycolysis and gluconeogenesis, respec-
tively, which interconvert F6P and fructose 1,6-bisphosphate.
When F2,6BP is high, the switch is on and glycolysis is favored;
when it is low, the switch is off and gluconeogenesis is favored.

The role played by the bifunctionality of PFK-2/FBPase-2
appears not to have been clarified in the literature. For instance,
Okar et al. (20), in their major review, suggest that the bifunc-
tionality may be “something of an elaboration” and point to
previous modeling studies, in which dynamic phenomena like
bistability or oscillations have been suggested (39). More recent
experimental and mathematical studies in bacteria (29, 40 – 43)
and in plants (44) have shown that bifunctional enzymes satis-
fying appropriate assumptions can exhibit forms of robustness,
in which the steady-state concentration of the modified sub-
strate is independent of the total amounts of substrate and
enzyme (45). Such “absolute concentration robustness” (46) is
not found for the bifunctional modification cycles studied here,
as we will see below.

FIGURE 3. Bifunctional enzyme E � F behaves like two separate enzymes E and F, with an additional conservation law. A key assumption is that the two
catalytic domains operate independently of each other. The details are explained in the text and a general proof is given in the “Appendix.”
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Before we can apply our analysis to PFK-2/FBPase-2, several
complexities in the in vivo context must be addressed. First, the
unmodified substrate, F6P, is produced and consumed within
an open system. Importantly, the catalytic rates of PFK-2/FB-
Pase-2 are several thousand-fold slower than those of PFK-1
and fructose-1,6-bisphosphatase (37). This time scale separa-
tion decouples the bifunctional enzyme from the main
thoroughfare of glycolysis and gluconeogenesis; alterations in
F6P levels on a short time scale of seconds are not seen by
PFK-2/FBPase-2, but persistent changes to F6P levels on a lon-
ger time scale of minutes are allocated between F6P and F2,6BP.
For this reason, the covalent modification cycle and its bifunc-
tional equivalent, which are analyzed above as closed systems,
still provide a reasonable approximation to the open physiolog-
ical system.

Second, the rate constants of PFK-2/FBPase-2 are modified
by signaling; glucagon acts through a G-protein-coupled recep-
tor pathway to phosphorylate Ser-32, whereas insulin acts
through a receptor tyrosine kinase pathway to dephosphorylate
Ser(P)-32. (These residue numbers skip the leading methio-
nine.) Phosphorylation diminishes the kinase activity and
increases the phosphatase activity (37). Signaling thereby alters
t* in Equation 6, moving its value between a level above 1, at
which the switch is off, and a level below 1, at which the switch
is on. This imposes another switch on top of that between F6P
and F2,6BP, whose analysis presents technical challenges aris-
ing from dimerization that are reviewed under the “Discus-
sion.” We assume that either all molecules of PFK-2/FBPase-2
are phosphorylated on Ser-32 or all molecules are unphos-
phorylated. We consider this reasonable because departure

from it should only exacerbate the incoherence by amplifying
the extrinsic noise. Indeed, this may have been why protection
against incoherence was especially advantageous in the most
downstream element ot the pathways.

Third, PFK-2/FBPase-2 is subject to additional regulation
(20, 47). For instance, the binding of glucokinase to the phos-
phatase domain of PFK-2/FBPase-2 appears to favor the kinase
activity of PFK-2/FBPase-2 (47). Although these findings are of
considerable importance for understanding glucose metabo-
lism, they do not directly affect the model considered here.

Fourth, the liver exhibits zonation in glucose metabolism,
with hepatocytes close to the incoming portal vein being
exposed to different levels of hormones to those close to the
outgoing central vein and having different metabolic activity
(48, 49). This gives rise to a sampling effect; if individual cells
are assumed to choose the level of an enzyme from a normal
distribution with standard deviation �, then the mean enzyme
level in a population of N cells will vary between populations
with a standard deviation of �/�N. In other words, small pop-
ulations exhibit greater variation in their mean behavior than
large populations. The zonation of the liver into small cell pop-
ulations exposed to similar levels of hormones therefore places
even more reliance on a coherent switching mechanism than
would be needed if the liver was an unzoned homogeneous
tissue.

Finally, our analysis has been based on taking the limit as
total substrate increases. To address this, we undertake below a
numerical simulation of PFK-2/FBPase-2, which confirms the
limiting analysis and provides additional insights into the low
substrate regime.

FIGURE 4. Bifunctionality in glucose homeostasis. A, key control point in glycolysis and gluconeogenesis in the liver. Enzymes are shown as gray ovals;
principal metabolites as boxes. Abbreviations are explained in the text. The heavy arrows from insulin and glucagon represent the signaling pathways
downstream from these hormones, which ultimately modify the phosphorylation state of the Ser-32 residue of PFK-2/FBPase-2. B, ribbon diagram of the crystal
structure of bifunctional PFK-2/FBPase-2 (Protein Data Bank code 1BIF), showing the well separated phosphatase and kinase domains, prepared using Open
Source PyMol 1.2.x. C, plots of steady-state concentrations of F6P (blue) and F2,6BP (red) against total fructose for Ser-32 (left) and Ser(P)-32 (right). Here “total
fructose” refers to the closed PFK-2/FBPase-2 system and consists of F6P, F2,6BP and enzyme-bound intermediates. The inset shows a higher resolution plot of
F2,6BP, with an expanded horizontal scale (millimolar and not micromolar) and a contracted vertical scale (nanomolar and not micromolar).
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With these considerations in mind, we can apply the analysis
above to PFK-2/FBPase-2. The individual enzyme mechanisms
are known in detail, as shown in Reactions 1 and 2, and these are
readily accommodated in the reaction grammar of Ref. 13 in the
form of Reactions 3 and 4, respectively. The two catalytic
domains are well separated (Fig. 4B) and are thought to operate
independently. Our analysis suggests that the bifunctionality of
PFK-2/FBPase-2 ensures coherent switching within small zonal
populations of cells. Furthermore, for efficient switching, PFK-
2/FBPase-2 should operate more irreversibly, with the high
insulin (Ser-32) and high glucagon (Ser(P)-32) states on oppo-
site sides of the on/off transition point in Equation 6, with
Ser-32 being on and Ser(P)-32 being off.

The in vitro data support this. The kinase and phosphatase
domains of PFK-2/FBPase-2 show little, if any, reversibility. As
Okar et al. (24) say, “In isolation, neither reaction is freely
reversible.” Furthermore, we found no data on product-rebind-
ing rates, suggesting that the enzymes may be close to being
strongly irreversible, with only weak rebinding of product to
enzyme. If we assume strong irreversibility as a first approxima-
tion, then � � 	 � 0 and � � � � 0, so that Equation 6 simplifies
to t* � 1/� � (c1

FK1
F)/( c0

EK0
E). For the kinase mechanism in

Reaction 3 and the phosphatase mechanism in Reaction 4, we
get Equation 9,

K0
E �

b2 � c1

a*2
, K1

F �
b3 � c2

a3
(Eq. 9)

c0
E �

c1a*2
b2 � c1

, c1
F �

c2a3

b3 � c2

so that t* � c2/c1. Using the values in Table 1, we see that, for
Ser-32, t* � 0.66 � 1 and the switch is on, and for Ser(P)-32,
t* � 3.99 � 1 and the switch is off, as expected. Ser(P)-32 is
more firmly off than Ser-32 is on, which may reflect the need to
more efficiently inhibit glycolysis under glucose depletion. We
stress that this calculation can readily be extended to the more
realistic situation in which there is limited product rebinding,
once reliable estimates are available for these rates.

We predict from this analysis that replacement of endoge-
nous bifunctional PFK-2/FBPase-2 by two separately regulated

monofunctional enzymes should lead to incoherent mosaic
behavior within the individual zones in the liver when switching
between insulin and glucagon stimulation.

Other tissue-specific PFK-2/FBPase-2 isoforms are also of
interest, but fewer experimental measurements are available
for them. Cancer cells often overexpress the B3 isoform of PFK-
2/FBPase-2, which has far stronger kinase than phosphatase
activity (50). Dephosphorylation capability may be supplied
instead by TIGAR (36). Reliance on two monofunctional
enzymes may reflect an oncogenic advantage in bypassing the
cell-to-cell coherence offered by the bifunctional enzyme.

Switching Behavior in the Low Substrate Regime—It remains
to be understood what happens away from the high substrate
limit. This is difficult to carry out analytically, so we undertook
a numerical simulation for the particular example of PFK-2/
FBPase-2. Differential equations were compiled for the bifunc-
tional enzyme using the enzyme mechanisms in Reactions 1
and 2, assuming mass action kinetics, and these equations were
numerically integrated in MATLAB using the rate constant val-
ues in Table 1 (see under “Experimental Procedures”). We
found that, as total fructose increases, either steady-state [F6P]
(for Ser-32) or steady-state [F2,6BP] (for Ser(P)-32) increases to
a plateau, after which increasing fructose is allocated linearly to
the other substrate form (Fig. 4C). In the Ser(P)-32 case, the
plateau level of [F2,6BP] is particularly low (Fig. 4C, right
panel), suggesting again that the switch may be kept decisively
off during glucose depletion. We also found that the plateau
levels were independent of the level of PFK-2/FBPase-2 (data
not shown).

We undertook a further sensitivity analysis to ensure that
these plateaus and straight lines were not an accident of the
chosen rate constant values. We randomly sampled 10,000 val-
ues around each of the Ser-32 and Ser(P)-32 estimated values in
Table 1 and numerically integrated the resulting equations (see
under “Experimental Procedures”). We found that, with suffi-
ciently stringent numerical procedures, all 20,000 choices
yielded asymptotic straight lines for both steady-state [F6P] and
steady-state [F2,6BP], with a goodness of fit greater than 0.95
(Fig. 5). We also found that these straight lines had the expected
patterns of slopes as follows: when t* �1 (Fig. 5, blue points), the

TABLE 1
Measured parameter values and calculated rate constants
The top section gives experimentally measured parameter values, extracted from the cited references, and rate constants for the kinase reactions in Reaction 1, calculated
as explained under “Experimental Procedures,” for both the unphosphorylated (Ser-32) and the phosphorylated (Ser(P)-32) enzyme. The bottom section gives the same for
the phosphatase reactions in Reaction 2. 1 unit � 1 �mol product/min.

Parameter Ser-32 Ser(P)-32 Units Refs.

PFK-2 S0.5 ATP 150 150 �M 24
S0.5 F6P 32 492 �M 21
Vmax 129 44 milliunits/mg 21
a1 7.86  10�2 2.70  10�2 M�1 s�1

b1 1.18  10�1 4.04  10�2 s�1

a2 7.36  10�6 1.64  10�5 M�1 s�1

b2 4.71  10�2 1.62  10�2 s�1

c1 2.36  10�1 8.09  10�2 s�1

r1 2.36  10�1 8.09  10�2 s�1

FBPase-2 S0.5 F2,6BP 100 100 nM 57
Vmax 86 177 milliunits/mg 21
a3 2.00  10�7 2.00  10�7 M�1 s�1

b3 3.84  100 3.68  100 s�1

c2 1.56  10�1 3.23  10�1 s�1

r2 1.56  10�1 3.23  10�1 s�1
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[F6P] and [F2,6BP] slopes were 0 and 1, respectively, whereas
when t* �1 (red points), they were 1 and 0, respectively, irre-
spective of whether the rate constants were chosen around the
Ser-32 or Ser(P)-32 mean values. This is a stringent test, as it is
unlikely, if a straight line is found, for its slope to be near 0 or
near 1, unless it is exactly so for mathematical reasons. Sensi-
tivity analysis, therefore, shows no significant deviation from
the most salient feature of Fig. 4C, confirming that this is inde-
pendent of any particular choice of rate constant values.

This numerical simulation fully supports the limiting analy-
sis above. According to Equation 8, strongly irreversible
enzymes have an infinitely sharp switch, and we see from Fig.
4C that normalized [F2,6BP], which becomes u1 in the high
substrate limit, tends to 1 for Ser-32 and to 0 for Ser(P)-32, and
that the convergence is rapid once the plateaus are reached.
The simulation also shows that, instead of absolute concentra-
tion robustness, which has been suggested for certain other
bifunctional enzymes, PFK-2/FBPase-2 only exhibits robust
upper bounds on concentration: if t* �1 (for Ser-32), then [F6P]
always remains below a plateau level, and if t* �1 (for Ser(P)-
32), then [F2,6BP] always remains below a plateau level, and
these plateau levels are independent of the total amounts of
substrate and enzyme. Although the conclusions drawn from
this simulation apply to the specific example of PFK-2/FB-
Pase-2, previous work suggests that the plateaus and straight
lines of Fig. 4C are characteristic of modification cycles with
strongly irreversible enzymes (13).

We note an interesting discrepancy in the slopes in Fig. 5;
those which are one are almost exactly one, whereas those
which are zero have a broader spread. The same discrepancy is
found in the goodness of fit (Fig. 5, insets): those slopes which
are one (magenta) are almost exactly fitted to a straight line,
whereas those which are zero (green) are slightly less well fitted.
We suspect that the zero slopes are approached asymptotically
slower than the one slopes and that this is reflected in the fit-

ting. This may be of interest if the mathematical analysis in the
text can be extended from the limiting case of Stot3 ∞.

DISCUSSION

Reliance on the Michaelis-Menten mechanism has perpetu-
ated the convenient fiction that all enzymes have the same
mechanism and that enzymatic complexity can be ignored. The
dangers of this have been pointed out (11, 12), and much work
since the time of Michaelis and Menten has shown how
enzymes differ in their mechanisms (51, 52). The obstacle to an
improved dialogue between enzymology and systems biology
has been the lack of a systematic method to deal with the
increased complexity (19). We have shown here how this bar-
rier can be overcome for a covalent modification cycle. In par-
ticular, our results hold for any covalent modification cycle, no
matter how complex its enzyme mechanisms. Our ability to
draw such general conclusions rests on the linear framework,
which offers a systematic method for rising above the mecha-
nistic details (19).

This study builds upon our preliminary study of covalent
modification cycles, or “Goldbeter-Koshland” loops (13), in
which the analysis of complex enzyme mechanisms was first
developed. An important distinction between the previous
work and this study is that the former was limited to the case in
which both forward and reverse enzymes are strongly irrevers-
ible. Here, we have been able to drop this physiologically unre-
alistic assumption and analyze the general case.

This analysis has relied on two key technical ideas. The first is
that the steady-state behavior of a potentially complicated bio-
chemical system can be distilled into one or more algebraic
invariants, which summarize the relationship between selected
dynamical variables while eliminating all other variables. For
the covalent modification cycle studied here, the selected vari-
ables are [S0] and [S1] and a single invariant emerges (Fig. 1D).

FIGURE 5. Sensitivity analysis. A, for 10,000 sets of rate constant values centered around the Ser-32 values in Table 1, randomly chosen as described under
“Experimental Procedures,” the steady-state concentrations of F6P and F2,6BP were determined for increasing values of total fructose. The corresponding
graphs were fitted to straight lines and the respective slopes are plotted on a log scale. Those sets for which t* � 1 are plotted in blue, and those for which t*
� 1 are plotted in red. The former data points are clustered around (0, 1) but with a strongly asymmetric distribution, with the F2,6BP slope being almost exactly
1, whereas the F6P slopes occupy a broader range of values between 10�12 and 10�2. The latter data points are clustered around (1, 0) with a similarly
asymmetric, but reversed, distribution. The two insets show the coefficient of determination for each linear fit, plotted against the selection number in which
the corresponding rate constant values were found, from 1 to 10,000. The points with slope 1 are colored magenta, and those with slope 0 are colored green.
They show a different pattern of correlation, with the former clustered almost exactly at 1.000, while the latter are more diffusively scattered around a lower
value. B, same plot for the 10,000 rate constant values centered around the Ser(P)-32 values in Table 1.
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The idea of invariants emerged in previous work (27) and has
been exploited in other contexts (13, 28, 29).

The second technical idea is to consider the steady-state
behavior in the high substrate limit, which greatly simplifies the
mathematical analysis. The system is reduced to a pair of equa-
tions, Equations 2 and 3, from which our main results readily
follow. In particular, we find that the range and sharpness of
switching are maximized when the enzymes operate as irre-
versibly as possible (Fig. 2), but this comes at the expense of a
trade-off between switching efficiency on the one hand and
cell-to-cell coherence on the other hand. The idea of taking
limits to simplify the analysis appears to be new. Its legitimacy
rests on the fact that any covalent modification cycle is mono-
stable, for which we have given a careful justification in the
“Appendix.”

Our results offer a new interpretation for the bifunctionality
of PFK-2/FBPase-2, which plays a central role in regulating glu-
cose metabolism in the liver. Covalent modification cycles and
bifunctional enzymes have been studied independently in the
past, while more recent work has continued to rely on Michae-
lis-Menten assumptions (53). The general relationship between
modification cycles and bifunctionality with independent
domains, as described in Fig. 3, appears not to have been noted
previously. Our results suggest that the bifunctionality of PFK-
2/FBPase-2 is important not to ensure concentration robust-
ness, as suggested for some other bifunctional enzymes, but to
circumvent the trade-off between efficiency and coherence
within individual zones in the liver. This leads to a clear predic-
tion, which could potentially be tested in a transgenic mouse or
rat; if endogenous PFK-2/FBPase-2 is replaced by two mono-
functional enzymes, individual zones in the liver should exhibit
more incoherent mosaic choices between glycolysis and gluco-
neogenesis, when switching between insulin and glucagon
stimulation.

Bifunctionality in PFK-2/FBPase-2 appears to have origi-
nated as a gene fusion in an ancestor of all eukaryotes (54). The
presence of two structural domains on the same polypeptide
has been largely retained, but many unicellular eukaryotes,
including protists and yeasts like Saccharomyces cerevisiae,
have accumulated what appear to be inactivating mutations in
one or the other of the domains, which may render the enzyme
effectively monofunctional. In contrast, working bifunctional-
ity has been retained and duplicated in several multicellular
lineages. Although this is broadly consistent with our sugges-
tion that bifunctionality is advantageous in a multicellular tis-
sue context, there is insufficient biochemical characterization
to be more definitive. Moreover, the role played by F2,6BP as an
allosteric effector varies between different lineages (54), and
there could be other evolutionary advantages to bifunctionality
beyond that suggested here.

There are several other biologically interesting covalent
modification cycles. These include glycogen phosphorylase
(55), isocitrate dehydrogenase (56), and, as mentioned above,
PFK-2/FBPase-2 itself on its Ser-32 site. Interestingly, these
substrates are all proteins, unlike F6P. In each case, the sub-
strate oligomerizes, creating two or more modification sites,
not one, so that these examples fall outside the scope of this
study. There is no difficulty in accommodating enzymatic com-

plexity in the multisite case (16, 17). The difficulty lies in the
loss of monostability (15, 30), which means that the steady state
is no longer a single-valued function of the conserved totals.
The high substrate limit cannot be directly taken, which was the
key step in our analysis. In the multisite case, a more compli-
cated multiple-valued algebraic relationship does exist between
the steady state and the conserved totals (15). If the behavior of
this relationship can be determined in the high substrate limit,
it may permit a similar approach to the multisite cycle as under-
taken here for the single site cycle. This may help to explain
why, of the examples quoted above, isocitrate dehydrogenase
has a bifunctional modifying/demodifying enzyme (29, 42),
whereas glycogen phosphorylase and PFK-2/FBPase-2 do not.
The analysis of switching behavior in the multisite case remains
an intriguing open problem.
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APPENDIX

We provide here the mathematical proofs of the key asser-
tions in the paper.
Uniqueness of the Steady State and Functional Dependence
on Totals

We prove that a single site modification cycle always has a
unique steady state. The proof requires several steps. To avoid
excessive length, we assume that the generalized parameters, K*

*

and c*
*, are positive and finite, as is the case for the right-hand

mechanism in Fig. 1B and omit discussion of special cases in
which some of the total generalized Michaelis-Menten con-
stants are infinite or some of the total generalized catalytic effi-
ciencies are zero, as is the case for the left-hand mechanism in
Fig. 1B. All other values chosen are assumed to be positive. All
values constructed in the proof are also positive, as can be read-
ily checked.

Step 1—If Etot and Ftot are chosen, then, as solutions of the
invariant in Fig. 1D, a given value of [S1] is associated to a
unique value of [S0]. Furthermore, this relationship is mono-
tone-increasing, i.e. if [S1] increases then so too does [S0].

If Etot, Ftot. and [S1] are assumed to be fixed, the invariant
takes the form as shown in Equation 10,

QL�	S0
� � QR�	S0
� (Eq. 10)

where QL and QR are quadratic expressions in [S0]. It is evident
that both QL and QR have one positive and one negative root
and that QL has a minimum, and QR has a maximum. It can be
seen from Fig. 6 that this geometry guarantees a unique positive
solution for [S0] in Equation 10. This proves the first part. For
the second part, the annotations in Fig. 6 show that increasing
[S1] widens the gap on the [S0] axis between the positive and
negative roots of both QL and QR, while also decreasing the
minimum of QL and increasing the maximum of QR. Accord-
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ingly, the unique positive solution for [S0] in Equation 10
increases. This proves the second part.

Step 2—Suppose that Stot, Etot, and Ftot are given. There exists
a unique value of [S1] that provides a solution to both the invari-
ant and the substrate conservation law.

The substrate conservation law can be written as shown in
Equation 11,

Stot � 	S0
 � 	S1
 � Ytot (Eq. 11)

where Ytot is the total of all the intermediates. We are going to
write all the terms on the right-hand side of Equation 11 as
functions of [S1]. For [S0], because Etot and Ftot are given, we
know from the first part that [S0] � �([S1]), where � is a mono-

tone-increasing function. This enforces compliance with the
invariant. For Ytot, we can use the conservation laws for the
enzymes, to write Equation 12,

Ytot � Etot � 	E
 � Ftot � 	F
 (Eq. 12)

Using the total generalized Michaelis-Menten constants, as
described in Ref. 13, the conservation law for enzyme E can be
written as shown in Equation 13,

Etot�	E
 � � 	S0
�K0
E � 	S1
�K1

E

1 � 	S0
�K0
E � 	S1
�K1

E�Etot (Eq. 13)

and the conservation law for enzyme F as shown in Equation 14,

Ftot�	F
 � � 	S0
�K0
F � 	S1
�K1

F

1 � 	S0
�K0
F � 	S1
�K1

F�Ftot (Eq. 14)

The right hand sides of Equation 13 and 14 are monotone-
increasing functions of [S0] and [S0], so if we substitute [S0] �
�([S1]) into them, we can express Ytot as shown in Equation 15,

Ytot � �	S1
� (Eq. 15)

where  is also a monotone-increasing function. Note that the
intermediate enzyme-substrate complexes can never exceed
the total amounts of all the enzymes, Ytot � Etot � Ftot, so that 
remains bounded above, no matter how large [S1] becomes.
Putting this all together, we find Equation 16.

Stot � 	S1
 � ��	S1
� � �	S1
� (Eq. 16)

Although we do not know the exact form of � and , we know
enough about these functions to solve Equation 16 for [S1] by
the geometric method introduced in Ref. 13. This is illustrated
in Fig. 7A. We plot three curves as functions of [S1]. The first
two curves are static, and the third curve will be moved to find
the solution to Equation 16. The first curve is the “diagonal”
given by the graph of y � Stot � [S1]. The second is the “inter-
mediate curve” given by the graph of y � ([S1]). The third is the

FIGURE 6. Appendix, solution of Equation 10. Hypothetical graphs of the
quadratic expressions QL (blue) and QR (magenta) are plotted as functions of
[S0] The points of intersection of the parabolas with the horizontal and vertical
axes are readily calculated from the invariant in Fig. 1D and are annotated as
shown. This arrangement of the two graphs depends on the particular values
of the parameters; for instance, for the positive roots of QL and QR to be as
shown, it is necessary and sufficient that c1

F/c0
F � c1

E/c0
E. The intersections of the

two graphs give the solutions of [S0] in Equation 10. It can be seen that there
is always a unique positive solution, marked by .

FIGURE 7. Appendix, solution of Equation 16. A, “diagonal,” “intermediate,” and “substrate” curves are shown as graphs of functions of [S1], as explained in the
“Appendix.” The intermediate and substrate curves are hypothetical but illustrate how the procedure works when the only thing known about the curves is that
they are monotone-increasing. There is always a unique “upper point” if the slider is above the [S1] axis and below the diagonal. There is always a unique “lower
point” if the slider is below the asymptote of the intermediate curve. B, solution to Equation 16 is found by moving the slider until the upper and lower points
are on the same vertical line. Because the diagonal has slope �1, it can be seen that, in this position, the three segments of the vertical line, reading from the
top down, are [S1], �([S1]), and ([S1]), which must, accordingly, sum up to Stot, thereby solving Equation 16 for [S1]. It is clear that there is always a unique
position where this happens. The various terms in Equation 16 at the solution point can be read off on the horizontal axis, as shown.
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“substrate curve,” given by the graph of y � �([S1]). The origin
of the substrate curve should be thought of as a moveable
“slider” whose position on the vertical y axis can be altered,
taking along with it a horizontal “substrate axis.” Because � is
monotone-increasing, it is clear that no matter where the slider
is between 0 and Stot, the substrate curve will intersect the diag-
onal in a unique “upper point.” Also, because  is monotone-
increasing and bounded above, the slider can always be lowered
so that the substrate axis intersects the intermediate curve,
which it can only do in a unique “lower point.” Suppose now
that the lower point is to the left of the upper point (i.e. the [S1]
coordinate of the former is less than that of the latter), as in Fig.
7A. Then, by moving the slider upward, the upper and lower
points can be brought closer to each other. Conversely, if the
lower point is to the right of the upper point, the slider can be
lowered to bring the two points closer. In either case, no matter
what the shapes of � and , the slider can be moved to a unique
position at which the upper and lower points are on a vertical
line. When that happens, it is easy to see from Fig. 7B that
Equation 16 is solved. Hence, there is a unique value of [S1],
which is a solution to both the invariant and the substrate con-
servation law, as required.

Step 3—Suppose that Stot, Etot and Ftot are given. There is a
unique steady state satisfying the corresponding conservation
laws.

The previous step shows that there is a unique value of [S1]
that provides a solution to both the invariant and the sub-
strate conservation law. The value of [S0] in that common
solution is given by [S0] � �([S1]). Because Etot and Ftot are
given, the values of [E] and [F] can now be determined from
Equations 13 and 14, which correspond to the conservation
laws for the two enzymes. Finally, the concentrations of all
the intermediate complexes can be determined from the lin-
ear framework, as in Equation 8 of Ref. 13. Each of the
dynamic variables in the system has now been given a value.
It remains only to check that these constitute a steady state,
a point at which all derivatives vanish. We can appeal to
Theorem 2 of Ref. 16, which gives conditions for any system
of modification and demodification under which a set of
values for the dynamic variables constitutes a steady state of
the system. The only condition that requires checking is that
Equation 26 of Ref. 16 is satisfied. Translating this into the
current setting, we need only to show that Equation 1 is
satisfied. The values of [S0], [S1], [E], and [F] were defined
above using the invariant and the enzyme conservation laws.
We can use the conservation laws for Etot and Ftot, to rewrite
the invariant as shown

	E
�c0
E	S0
 � c1

E	S1
� � 	F
�c1
F	S1
 � c0

F	S0
� (Eq. 17)

which gives Equation 1, as required. It follows from Theorem 2
of Ref. 16 that we have a unique steady state that is consistent
with the chosen values of Stot, Etot, and Ftot. Accordingly, the
steady state, and particularly the quantities [S0] and [S1], can be
regarded as functions of Stot, Etot, and Ftot.

Existence of the High Substrate Limit—The previous section
showed that we can treat [S0] and [S1] as functions of Stot, Etot,
and Ftot. We can therefore consider the limiting behavior as

Stot3∞. We want to show that [S0]/Stot and [S1]/Stot converge
in this limit. Because the total amount of all the intermediate
complexes is bounded above, it is clear that either [S0] or [S1],
and possibly both, must increase without limit as Stot 3 ∞.
Suppose, without loss of generality, that [S0] does so. Dividing
both sides of the invariant in Fig. 1D by [S0]2, we may rewrite it
in terms of [S1]/[S0] and terms that vanish in the limit shown in
Equation 18,

Etot

Ftot
� 1

	S0

�

1

K0
F �

1

K1
F

	S1


	S0

��c0

E � c1
E
	S1


	S0

�

� � 1

	S0

�

1

K0
E �

1

K1
E

	S1


	S0

��c1

F
	S1


	S0

� c0

F� (Eq. 18)

It follows that [S1]/[S0] 3 � as Stot 3 ∞ provided there is a
solution to Equation 19.

Etot

Ftot
� 1

K0
F �

�

K1
F��c0

E � c1
E�� � � 1

K0
E �

�

K1
E��c1

F� � c0
F� (Eq. 19)

This equation, however, has the same form as Equation 10
above and can be shown to have a unique solution by the same
argument as in Step 1 above. Accordingly, [S1]/[S0] 3 � as
Stot3 ∞. Using the substrate conservation law in the form of
Equation 11, we can now write Equation 20.

	S0


Stot
�

1

1 � 	S1
�	S0
 � Ytot�	S0

(Eq. 20)

Because the intermediates are bounded above and we are assum-
ing that [S0] increases without bound, we find Equation 21.

lim
Stot ¡ �

	S0


Stot
�

1

1 � �
(Eq. 21)

For the other substrate form, we can use the conservation law in
Equation 11 again. Dividing both sides by Stot and taking the
limit as Stot3 ∞, we find Equation 22.

lim
Stot ¡ �

	S1


Stot
�

�

1 � �
(Eq. 22)

These quantities correspond to u0 and u1, respectively, as
defined in the text.

Proofs of Switching Formulas

Discrimination between Off and On—If the left-hand side of
the invariant in Equation 3 is positive, which is equivalent to
Equation 23,

u1

u0
�

1

�
(Eq. 23)

then the right-hand side must also be positive, which is equiv-
alent to Equation 24,

u1

u0
� 	 (Eq. 24)

and in particular Equation 25.
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	 �
1

�
(Eq. 25)

It is easy to see that the converse holds, so that this inequality in
the efficiency ratios is necessary and sufficient for the two sides
of the invariant to be positive. In this case, we get Equation 26.

	 �
u1

u0
�

1

�
(Eq. 26)

Using the fact that u0 � u1 � 1 from Equation 2, we see
Equation 27.

� 	

1 � 	� � u1 � � 1

1 � �� (Eq. 27)

If the inequality in the catalytic efficiency ratios is reversed,
then both sides of the invariant are negative, and the end points
of this interval are reversed. The range of u1 is then given by
Equation 28,

max u1 � min u1 �
1

1 � �
�

	

1 � 	
(Eq. 28)

which gives Equation 5.
Sharpness at the Transition Point—We want to determine

the rate at which u1 changes as a function of t � Etot/Ftot, eval-
uated at the transition point in Equation 6. It is straightforward
to differentiate the invariant in Equation 3 implicitly with
respect to t, at the point t � t*, using the fact that du1/dt �
-du0/dt, which follows from Equation 2, and that u0 � u1 � 1/2
when t � t*. We find Equation 29,

du1

dt
�t � t* �

��1 � ��2�1 � ��2

4��� � ���1 � ���1 � 	� � �� � 	��1 � ���1 � ���

(Eq. 29)

which gives Equation 7.
Maximum Sharpness—The sharpness at the transition point

may be rewritten by dividing above and below by 1 � � to
achieve Equation 30.

��1 � ��2�1 � ��

4��� � ���1 � ���1 � 	���1 � �� � �� � 	��1 � ���

(Eq. 30)

Minimizing � causes the numerator to increase and the
denominator to decrease. It follows that, no matter what
the values of the other (fixed) parameters, � � 0 maximizes the
sharpness. This corresponds to perfect irreversibility of the for-
ward enzyme, E. The sharpness is then given by Equation 31.

��1 � ��2

4���1 � ���1 � 	� � �� � 	��1 � ���
(Eq. 31)

The parameter 	 only appears in the denominator, where it has
the coefficient 1 � ��. If the enzymes are biased toward their
normal directions, as assumed here, then �,� � 1 and so the
coefficient of 	 is positive. Accordingly, the expression in Equa-
tion 31 is at a maximum when 	 � 0, corresponding to perfect

irreversibility of the reverse enzyme, F. Hence, no matter what
the value of the parameters �, �, and �, the sharpness is at a
maximum when both enzymes are perfectly irreversible, as
illustrated in Fig. 2B.

Bifunctional Enzyme Behavior

We prove that the bifunctional enzyme E  F, in which the
two domains are independent of each other, behaves identically
to the two monofunctional enzymes E and F, together with an
additional conservation law. This was illustrated in Fig. 3 for
reversible Michaelis-Menten mechanisms, but we show here
that it holds no matter how complex the mechanisms of E and F,
as long as they subscribe to the reaction “grammar” of Ref. 13.
This grammar allows any mechanism that can be built up out of
three basic reactions as follows: binding of substrate to enzyme
to form an intermediate, release of substrate and enzyme from
an intermediate, and conversion of one intermediate into
another as shown in Reaction 5.

E � Si ¡ Yj, Yj¡E � Si, Yj¡Yk

REACTION 5

Suppose that E uses intermediates Y1, . . . , Yn and that F uses
intermediates Z1, . . . , Zm. It will be convenient to set Y0 � E
and Z0 � F. If the mechanism of E has a basic reaction of the
form shown in Reaction 6,

E � S*¡
k

Ya

REACTION 6

where S* is either S0 or S1, then, because the two domains of the
bifunctional enzyme operate independently of each other, there
are corresponding reactions of the form shown in Reaction 7.

�E � Zi� � S* ¡
k

�Ya � Zi� for 0 
 i 
 m

REACTION 7

We can summarize these reactions by defining the formal
enzyme shown in Equation 32

E � �E � Z0, E � Z1,· · · ,E � Zm� (Eq. 32)

the formal intermediate shown in Equation 33

Y� a � �Ya � Z0, Ya � Z1,· · · ,Ya � Zm� (Eq. 33)

and the formal reaction shown in Reaction 8.

E� � S* ¡
k

Y� a

REACTION 8

Such a formal reaction is just a restatement of the m reactions in
Reaction 7, where it is assumed that single component, S*, par-
ticipates in a proper reaction with each component of the for-
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mal enzyme E� . It is essential for this restatement that the two
domains be independent, which is equivalent to each of the
reactions in Reaction 7 having the same rate constant, k. This
allows k to be “lifted” to the formal reaction in Reaction 8.

We see that Reaction 8 is identical in structure to the basic
Reaction 6, with E� in place of E and Y� a in place of Ya. A similar
restatement using E� and other formal intermediates, Y� i for 1 

i 
 n, defined as in Equation 33, can be undertaken for every
basic reaction in Reaction 5 which appears in the mechanism
for E. It is clear that this procedure simply reconstructs the
mechanism of the enzyme E with the intermediates Y1,���, Yn in
terms of the formal enzyme E� and the formal intermediates
Y� 1,���, Y� n. An exactly similar construction can be made for F and
the intermediates Z1,���, Zm in terms of the formal enzyme
shown in Equation 34

F� � �Y0 � F, Y1 � F,· · · ,Yn � F� (Eq. 34)

and the formal intermediates shown in Equation 35

Z� j � �Y0 � Zj,Y1 � Zj,· · · ,Yn � Zj�, for 1 
 j 
 m

(Eq. 35)

to reconstruct the mechanism of F. It follows that the dynami-
cal system defined by E, F, and their respective mechanisms is
identical to the dynamical system defined by E� , F� , and their
respective mechanisms. In addition, we have Equation 36

E� tot � 	E�
 � 	Y�1
 � · · · � 	Y� n


� �
0 
 i 
 m

	E � Zi
 � �
0 
 i 
 m

	Y1 � Zi
 � · · ·

� �
0 
 i 
 m

	Yn � Zi
 (Eq. 36)

� �
0 
 j 
 n

�
0 
 i 
 m

	Yj � Zi


and Equation 37

F� tot�[F�] � 	Z�1
 � · · · � 	Z� m


� �
0 
 i 
 n

	Yi � F
 � �
0 
 i 
 n

	Yi � Z1
 � · · ·

� �
0 
 i 
 n

	Yi � Zm
 (Eq. 37)

� �
0 
 i 
 m

�
0 
 j 
 n

	Yj � Zi
.

It follows by interchange of the summations that E� tot � F� tot, as
required.
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