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Diverse physical systems are characterized by their response to small perturbations. Near thermody-
namic equilibrium, the fluctuation-dissipation theorem provides a powerful theoretical and experimental
tool to determine the nature of response by observing spontaneous equilibrium fluctuations. In this spirit,
we derive here a collection of equalities and inequalities valid arbitrarily far from equilibrium that constrain
the response of nonequilibrium steady states in terms of the strength of nonequilibrium driving. Our work
opens new avenues for characterizing nonequilibrium response. As illustrations, we show how our results
rationalize the energetic requirements of common biochemical motifs.
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I. INTRODUCTION

One of the basic characteristics of any physical system is
its response to small perturbations [1]. For instance,
response is used to quantify everything from material
properties—such as conductivity [2] and viscoelasticity
[3]—to the sensing capability of cells [4,5] and the
accuracy of biomolecular processes [6–8]. Near thermo-
dynamic equilibrium, response is completely determined
by the nature of spontaneous fluctuations, according to the
fluctuation-dissipation theorem (FDT) [2]. This deep con-
nection between response and fluctuations is not only of
theoretical interest, but also finds practical application. The
FDT forms the basis of powerful experimental techniques,
such as microrheology, spectroscopy, and dynamic light
scattering [1]. It additionally has implications for the design
of mesoscopic devices: Highly responsive equilibrium
devices are always plagued by noise. To combine low
fluctuations with high sensitivity, a device must be driven
away from equilibrium.
The great utility of the FDT near equilibrium [1] has led

to significant interest in expanding its validity and

developing generalizations for nonequilibrium situations.
Generically, response can be related to some formal non-
equilibrium correlation functions [9–13]. While these
predictions offer fundamental theoretical insight, the nec-
essary correlations are often prohibitively difficult to
measure except in simple single-particle systems [14–16].
In certain special cases, such as under stalling conditions,
the FDT holds unmodified [17]. More commonly, however,
the study of nonequilibrium response has focused on how
the FDT is violated. For example, the violation of
the velocity FDT for Brownian particles can be related
to the steady-state heat dissipation through the Harada-
Sasa equality [18,19], a useful prediction that is utilized to
measure dissipation and efficiency in molecular motors
[20]. Alternatively, violations of the FDT can be used to fit
model parameters, as suggested for models of biomolecular
processes [21,22]. More often FDT violations are framed
in terms of system-specific “effective temperatures”
[23–25], whose time dependence under some circum-
stances can reveal information about effective equilibrium
descriptions.
Inspired by the recent demonstration of thermodynamic

bounds on far-from-equilibrium dynamical fluctuations
[26,27], we show here that generic nonequilibrium steady-
state response can be constrained in terms of experimentally
accessible thermodynamic quantities. In particular, we
present equalities and inequalities—akin to the FDT but
valid arbitrarily far from equilibrium—that link static
response to the strength of nonequilibrium driving. Our
results open new possibilities to experimentally characterize
away-from-equilibrium response and suggest design princi-
ples for high-sensitivity, low-noise devices. As illustrations,

*Corresponding author.
jmhorow@umich.edu

†Corresponding author.
jaowen@mit.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 10, 011066 (2020)

2160-3308=20=10(1)=011066(21) 011066-1 Published by the American Physical Society

https://orcid.org/0000-0002-9180-3794
https://orcid.org/0000-0003-4617-7146
https://orcid.org/0000-0002-9139-0811
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.10.011066&domain=pdf&date_stamp=2020-03-18
https://doi.org/10.1103/PhysRevX.10.011066
https://doi.org/10.1103/PhysRevX.10.011066
https://doi.org/10.1103/PhysRevX.10.011066
https://doi.org/10.1103/PhysRevX.10.011066
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


we show how our results rationalize the energetic require-
ments of biochemical switches, biochemical sensing, and
kinetic proofreading.

II. MODELING NONEQUILIBRIUM
STEADY STATES

Nonequilibrium steady states are characterized by the
constant and irreversible exchange of energy and matter
between a system and its environment. These flows are
driven by thermodynamic affinities—quantities like temp-
erature gradients, chemical potential differences, and non-
conservative mechanical forces. The underlying dynamics
leading to the establishment of such steady states are often
well modeled as a continuous-time Markov jump process
on a finite set of states i ¼ 1;…; N, which represent
(coarse-grained) physical configurations. The probability
piðtÞ to find the system in state i at time t then evolves
according to the master equation

_piðtÞ ¼
XN
j¼1

WijpjðtÞ; ð1Þ

where the off-diagonal entries of the transition rate matrix
Wij specify the probability per unit time to jump from j to i
and diagonal entries Wii ¼ −

P
j≠i Wji are fixed by the

conservation of probability. Time reversibility of the under-
lying microscopic dynamics implies that Wij ≠ 0 only if
Wji ≠ 0 [28]. We additionally suppose that, for any two
states, there is some sequence of allowed transitions
(Wij ≠ 0) connecting them, a property known as irreduc-
ibility. Under this assumption, no matter the initial con-
dition, the solution of the master equation (1) converges at
long times to the unique steady-state distribution π that
satisfies

P
N
j¼1Wijπj ¼ 0. This distribution π, and, in

particular, its dependence on physical quantities through
the transition rates Wij, serves as a general model of a
nonequilibrium steady state.
Many key properties of this nonequilibrium steady state,

including its thermodynamics, come to light by picturing
the stochastic dynamics described by Eq. (1) playing out on
a transition graph—a weighted directed graph G, as in

Fig. 1(a), where the vertices fig represent the states and
directed edges femng represent possible transitions,
weighted by the rates Wmn. Note that, by assumption,
every edge in G has a reverse, so we represent and discuss
the transition graph as if it were an undirected graph, with
the understanding that every undirected edge represents
two opposing directed edges.
The cycles in the graph, like those in Fig. 1(b), play a

central role in the thermodynamics of the steady state. A
cycle is a sequence of directed edges and vertices con-
necting the initial vertex to itself without self-intersecting:

C ¼ fi0 !
ei1i0i1 � � � → im !ei0im i0g. The asymmetry of the rates

around these cycles then encodes the thermodynamic
affinities driving the system out of equilibrium through
the cycle forces—the log of the product of rates around the
cycle divided by the product of rates in the reverse
orientation [29,30]:

FC ¼ ln

�
Wi0im…Wi2i1Wi1i0

Wimi0…Wi1i2Wi0i1

�
: ð2Þ

These cycle forces are linear combinations of thermody-
namic affinities multiplied by their conjugate distances—
for example, a chemical potential gradient times a change
in particle number. As such, the cycle forces equal the
dissipation (entropy production) in the environment
accrued every time the system flows around the cycle C.
This correspondence means that the cycle forces depend on
macroscopically tunable parameters—such as the environ-
mental temperature or chemical potential—that character-
ize how strongly the system is driven away from
equilibrium. If all the cycle forces vanish, the system
satisfies detailed balance, a statistical time-reversal sym-
metry [31] characteristic of thermodynamic equilibrium.

III. STATIC RESPONSE TO PERTURBATIONS

Now, suppose the transition rates WijðλÞ depend on a
control parameter λ, which could represent, say, the
strength of an applied electric field, a temperature, or even
a microscopic kinetic parameter such as a reaction barrier.
In this work, we focus on the response to static perturba-
tions, that is, how steady-state averages hQiπ ¼

P
j Qjπj

respond to small changes in λ:

∂λhQiπ ¼
X
i

Qi∂λπi ¼
X
i

Qi

X
kl

∂Wkl

∂λ
∂πi
∂Wkl

: ð3Þ

At thermal equilibrium, the steady state πeqi ∝ e−βϵiðλÞ
depends only on the underlying (free) energy landscape
ϵiðλÞ, irrespective of the precise form of the transition rates,
where β ¼ 1=kBT with kB Boltzmann’s constant and T the
temperature. This simplifying fact immediately implies the
static FDT, which equates the static response to an
equilibrium correlation function:

FIG. 1. Transition graphs and cycles. (a) Representative tran-
sition graph for a four-state system, which acts as a recurring
illustrative example. (b) Cycles around which the cycle forces FC
drive the system out of equilibrium.

OWEN, GINGRICH, and HOROWITZ PHYS. REV. X 10, 011066 (2020)

011066-2



∂λhQieq ¼ βCeqðQ;VÞ; ð4Þ

where CeqðQ;VÞ ¼ hQVieq − hQieqhVieq and the subscript
“eq” emphasizes that averages are taken with respect to the
equilibrium distribution [2]. Here, V ¼ −∂λϵ is known as
the coordinate conjugate to λ and represents the displace-
ment induced by λ—for example, volume is conjugate to
pressure and particle number is conjugate to chemical
potential. The FDT’s utility in part stems from the fact that
we often know the conjugate coordinate from basic
physical reasoning, and it is easily measured.
Away from equilibrium, the steady-state distribution

generally has a complicated dependence on the rates.
Nevertheless, response can always be related to a non-
equilibrium correlation function [9,10],

∂λhQiπ ¼ CπðQ; ∂λ ln πÞ; ð5Þ

but the relevant “conjugate coordinate” ∂λ ln π requires a
knowledge of the parameter dependence of the full non-
equilibrium steady-state distribution, which can be chal-
lenging to calculate or measure. Still, this response formula
is given thermodynamic meaning by relating the non-
equilibrium conjugate coordinate to the stochastic entropy
production rate [13] as well as to the time-reversal
symmetry properties of the path action [11].

IV. PARAMETERIZING PERTURBATIONS

Here, we turn our attention to the variations of the
steady-state distribution with the transition rates,
∂πi=∂Wkl, constraining them in terms of π and the cycle
forces FC. We accomplish this goal by breaking any
general perturbation into a linear combination of three
special types of perturbations that change rates in a
coordinated way. By focusing on these subclasses of
perturbations, we are able to provide clear and measurable
thermodynamic constraints on the static response.
To classify perturbations, it proves fruitful to parameter-

ize the rate matrix as

Wij ¼ exp ½−ðBij − Ej − Fij=2Þ�; ð6Þ

introducing the vertex parameters Ej, (symmetric) edge
parameters Bij ¼ Bji, and asymmetric edge parameters
Fij ¼ −Fji, which can all be varied independently. Any
rate matrix can be cast in this form, albeit nonuniquely. To
see this fact, consider the following program for identifying
such a parameterization: Choose the vertex parameters
fE1;…; ENg arbitrarily and then set

Bij ¼
1

2
½ðEj − lnWijÞ þ ðEi − lnWjiÞ�; ð7Þ

Fij ¼ −½ðEj − lnWijÞ − ðEi − lnWjiÞ�: ð8Þ

The nonuniqueness of the parameterization is manifest in
this construction because of the freedom to choose the Ei.
For example, we could choose Ei ¼ 0 for all i. We
emphasize, however, that no matter the choice, the deriv-
atives with respect to Ej, Bij, or Fij are independent of the
values of the parameterization. Variations of a vertex
parameter, say, Ej, are equivalent to scaling all of the rates
out of state j:

∂πk
∂Ej

¼
X
i

Wij
∂πk
∂Wij

: ð9Þ

Similarly, derivatives with respect to Bij and Fij multipli-
catively scale transition rates associated with a single edge:

∂πk
∂Bij

¼ −Wij
∂πk
∂Wij

−Wji
∂πk
∂Wji

; ð10Þ

∂πk
∂Fij

¼ 1

2

�
Wij

∂πk
∂Wij

−Wji
∂πk
∂Wji

�
: ð11Þ

These facts are illustrated in Fig. 2. We note that the right-
hand sides of Eqs. (9)–(11) do not depend on the choice of
parameterization (6), even though the parameterization is
not unique.
Our parameterization is reminiscent of the Arrhenius

expression for transition rates for a system evolving in an
energy landscape with wells of depth Ei and barriers of
height Bij driven by forces Fij. While we stress that Eq. (6)
does not, in general, support such an interpretation, the
analogy is suggestive in several ways. For example, the
asymmetric edge parameters Fij are the sole contributors to
the cycle forces (affinities) FC ¼ P

eij∈C Fij. Furthermore,
if all the Fij ¼ 0, the steady-state distribution has the
Boltzmann form πi ∝ expð−EiÞ, with the Ei acting as a
dimensionless energy.
Our main results are a series of simple thermodynamic

equalities and inequalities for how the steady state responds
to perturbations of the Ej, Bij, and Fij. By combining these
results, we can constrain the response to any arbitrary
perturbation of the rates through a decomposition of the
form

FIG. 2. Parameterizing perturbations. Any perturbation of rates
can be decomposed into the variation of some combination of
(a) vertex parameters, (b) edge parameters, and (c) asymmetric
edge parameters. Affected rates are highlighted.
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∂πk
∂λ ¼

X
j

∂Ej

∂λ
∂πk
∂Ej

þ
X
i>j

∂Bij

∂λ
∂πk
∂Bij

þ
X
i>j

∂Fij

∂λ
∂πk
∂Fij

: ð12Þ

The freedom in the rate parameterization makes this
decomposition nonunique, and the tightness of our inequal-
ities depends on the specific decomposition. For example,
one choice could force ∂λEi ¼ 0 for all i. We are not
presently aware of a good strategy to identify the decom-
position which yields optimally tight inequalities. In this
work, we show that simple decompositions can, never-
theless, yield interesting bounds.
In deriving our response results, the basic mathematical

tool we rely on is the matrix-tree theorem (MTT), presented
in the Appendix A, which gives an exact algebraic
expression for the steady-state probabilities πi in terms
of the rates Wij [29,32]. All our results—presented in the
following sections—are obtained by reasoning about the
result of differentiating the expression given by the MTT.
Proofs are given in the Appendixes.

V. VERTEX PERTURBATIONS

Our first main result is the exact expression for the
response to a vertex perturbation (Appendix B)

∂πi
∂Ek

¼
�−πið1 − πiÞ if i ¼ k;

πiπk if i ≠ k:
ð13Þ

We stress that the Bij and Fij are unrestricted, so this
equality holds even for nonequilibrium steady states. As an
immediate consequence, we also find that, for i ≠ j,

∂ ln ðπi=πjÞ
∂Ek

¼
8<
:

−1 if i ¼ k;

1 if j ¼ k;

0 otherwise;

ð14Þ

which implies that the relative probability between two
states is insensitive to the vertex parameters elsewhere in
the graph.
Remarkably, these equalities are exactly equivalent to the

response of a Boltzmann distribution to energy perturba-
tions, which leads to the surprising conclusion that a far-
from-equilibrium response has an equilibriumlike structure
if the perturbation leaves the Bij and Fij fixed. To leverage
this observation, let us assume that we vary the rates only
through the system’s energy function ϵiðλÞ and that the
rates depend on the energy as Wij ¼ ωijeβϵj , with arbitrary
energy-independent ωij. A comparison with Eq. (6) shows
that variations in the energy ϵi in this case can be para-
meterized as vertex parameters Ei. Then, Eq. (13) implies
that arbitrarily far from equilibrium the response maintains
the equilibriumlike form of the FDT,

∂λhQiπ ¼ βCπðQ;VÞ; ð15Þ

with the response proportional to the nonequilibrium
steady-state correlation with the coordinate conjugate to
the energy V ¼ −∂λϵ [cf. Eqs. (4) and (5)]. This prediction
implies that experimental verification of the static FDT is
not sufficient to conclude that a system is in equilibrium.

VI. SYMMETRIC EDGE PERTURBATIONS

More generally, a perturbation modifies not only the
vertex parameters Ei but also the edge parameters Bij.
While at equilibrium the steady state is independent of edge
parameters Bij, this is generically not the case out of
equilibrium. In this section, we demonstrate that, in fact, a
response to edge perturbations is constrained by thermo-
dynamic affinities through the cycle forces. For proofs of
the results in this section, see Appendix C.

A. Single edge

Our second main result is that the response to the
perturbation of a symmetric edge parameter Bmn, associated
to a single edge emn, is constrained by the cycle forces:���� ∂πi

∂Bmn

���� ≤ πið1 − πiÞ tanh ðFmax=4Þ; ð16Þ
���� ∂ðπi=πjÞ∂Bmn

���� ≤
�
πi
πj

�
tanh ðFmax=4Þ; ð17Þ

where

Fmax ¼ max
C∋emn

jFCj ð18Þ

is the maximum cycle force over all cycles that contain the
(undirected) perturbed edge emn (illustrated in Fig. 3). If the
cycle forces all equal zero—as they must at equilibrium—
then Fmax ¼ 0, and the response is zero, as expected. In
addition, only perturbations of an edge contained in a cycle
can induce a response: Perturbations of edges whose
removal would disconnect G, therefore, cannot alter the
steady state. Equation (16), furthermore, has the character
of the FDT, once we recognize πið1 − πiÞ as the variance of
the occupation fluctuations of state i; thus, we see a
manifestation of how thermodynamics shapes the interplay
between the response and fluctuations. These inequalities,
applying to all discrete stochastic dynamics, significantly
generalize a bound for two-state systems derived by
Hartich, Barato, and Seifert in a model of nonequilibrium
sensing [33].
The conditions for equality in Eqs. (16) and (17) would

suggest methods for designing optimized or highly respon-
sive devices. As detailed in Appendix E, we can exhibit at
least one scenario that does saturate Eq. (17): a single cycle
with strong timescale separation so that the system effec-
tively has only two states. This limiting scenario suggests
that small single-cycle systems are ideal for optimizing
response. Systematically deducing the system parameters

OWEN, GINGRICH, and HOROWITZ PHYS. REV. X 10, 011066 (2020)

011066-4



that saturate our inequalities, in general, remains for
future work.

B. Multiple edges

The response to a perturbation of multiple edge param-
eters can be bounded by combining Eq. (17) with the
triangle inequality. For example, for any set S of jSj edges,����X

emn∈S

∂ lnðπi=πjÞ
∂Bmn

���� ≤ X
emn∈S

���� ∂ lnðπi=πjÞ∂Bmn

����
≤ jSj tanhðFmax=4Þ: ð19Þ

It is clear, however, that this inequality is not always the
best we can do. Consider, for example, the case where S
consists of every edge in G. In this case, increasing all the
edge parameters by the same amount (which is what the
sum above amounts to) is like rescaling time, which cannot
affect π and, therefore, has zero response.
In this section, we provide a different bound on the

response to a perturbation of multiple edge parameters that
in many cases improves on Eq. (19). Suppose we vary the
edge parameters associated to the edges S of a subgraph
H ≠ G. Let W be the set of vertices of H that connect it to
the rest of the graph (i.e., the set of vertices ofH incident to
an edge not in H). Then,

����X
emn∈S

∂
∂Bmn

ln

�
πi
πj

����� ≤ ðjWj − 1Þ tanh
�
Fi↔j

4

�
; ð20Þ

where Fi↔j, defined precisely in Appendix C, can be
physically identified as the largest possible entropy pro-
duced in the environment when the system goes from i to j
and back again (along paths without a self-intersection).
Whenever there is only one path through state space
between i and j, and in all cases at thermodynamic
equilibrium, Fi↔j ¼ 0.
We finally note that our results (16), (17), and (20) admit

generalization to the response of a ratio of positive
observables hAi=hBi. In this general case, the bounds
remain unchanged, except that Fi↔j is replaced by its
maximum over all pairs of vertices i, j.

VII. ASYMMETRIC EDGE PERTURBATIONS

Last, the MTT allows us to bound the response to
asymmetric edge perturbations as (Appendix F)���� ∂πi

∂Fmn

���� ≤ πið1 − πiÞ ≤
1

4
; ð21Þ

which is related to, but distinct from, inequalities estab-
lished in Ref. [34]. This result is a consequence of an
identical inequality that holds for general rate perturba-
tions ∂πi=∂ lnWjk.
Any perturbation of rates can be decomposed into a

linear combination of perturbations of the vertex and edge
parameters Ei, Bij, and Fij we introduce, and so the
response can be bounded using our inequalities (via the
triangle inequality). What our results in this section show is
that, even for a general perturbations, there is a universal
bound—the response to the variation of a single rate is
bounded by a constant independent of the structure of G or
rates of other transitions, meaning that high sensitivity
always requires many different transitions to be perturbed,
their cumulative effect generating a response that can
greatly exceed 1=4.

VIII. BIOCHEMICAL APPLICATIONS

In this section, we illustrate the use of our main results by
detailing applications to well-studied motifs appearing in
biochemical networks.

A. Covalent modification cycle

First, we consider a well-studied model [35–38] of a
biological switch—the modification-demodification cycle
depicted in Fig. 4, also known as the Goldbeter-Koshland
loop [35,37] or “push-pull” network [39].
The network consists of a substrate with two forms, an

“unmodified” S and “modified” S�, along with enzymes E1

and E2 that actively catalyze its modification and

FIG. 3. Thermodynamics and topology bound response.
(a) Transition graph for our representative four-state system with
a single perturbed edge connecting states 1 and 2, e12, highlighted
in blue. (b) Only cycle forces FC around cycles that contain the
perturbed edge e12, highlighted in blue, constrain the static
response. (c) The maximum response maxj j∂πj=∂B12j to the
perturbation of the edge parameter B12 as a function of the
maximum cycle force around cycles containing e12 for 15 000
randomly sampled rate matrices (gray dots). All samples fall
below the predicted bound ð1=4Þ tanhðFmax=4Þ (red line).

UNIVERSAL THERMODYNAMIC BOUNDS ON NONEQUILIBRIUM … PHYS. REV. X 10, 011066 (2020)

011066-5



demodification, respectively. For example, if E1 is a kinase,
E2 a phosphatase, and S� a singly-phosphorylated form of
S, then the system is driven by the chemical potential
gradient Δμ ¼ μATP − μADP − μPi for ATP hydrolysis. In
the limit in which the substrate is very abundant compared
to its modifying enzymes, it is well known that such a
system can exhibit unlimited sensitivity to changes in the
ratio of the concentrations of the modifying and demodify-
ing enzymes [35].
In the other limit—that of a single substrate molecule—

our results (17) limit the sensitivity of the ratio πS�=πS for a
particular substrate molecule to changes in the enzyme
concentration (Appendix G):

s ¼
���� ∂ ln ðπS�=πSÞ∂ ln½E1�

���� ≤ tanhðΔμ=4kBTÞ; ð22Þ

where Fmax ¼ Δμ=kBT is the single chemical driving force.
For the simple cycle in Fig. 4(a), where each enzyme has a
single intermediate and we assume mass-action kinetics,
this result arises from unraveling a change in ½E1� as a
change in the vertex parameter associated to E1S, together
with changes in the parameters of the edges connecting E1S
to S and E1S to S�.
In fact, inequality (22) turns out to hold under assump-

tions much more general than those of Fig. 4(a). It remains
true even if catalysis by E1 and E2 proceeds via any number
of intermediate complexes with arbitrary rates as in
Fig. 4(b), as long as there is no irreversible formation of
a dead-end complex and the chemical driving is the same

around every cycle in which E1 makes the modification of
S and E2 removes it [37,38]. In this general case, the many
perturbed vertex and edge parameters [Fig. 4(b)] form a
subgraph that acts effectively as a single edge perturbation.
Our multiedge bound (20) then applies with FS↔S� ¼
Δμ=kBT being the maximum entropy produced to go from
the unmodified S to the modified S� form and back again.
In the absence of nonequilibrium drive (Δμ ¼ 0), it is

clear that this switch cannot work, because it operates by
varying the kinetics via an enzyme concentration, and at
equilibrium the steady state is independent of kinetics. It
has long been known that switches require energy
[36,40,41]. Our results provide a general quantification
of this requirement.

B. Biochemical sensing

The covalent modification cycle, discussed in the pre-
vious section, is an integral component of numerous
biochemical models for cellular sensing [5,39,42–44]. So
far, we have described a single-substrate molecule stochas-
tically switching between its two forms due to the action of
abundant enzymes E1 and E2. Here, we imagine there areN
substrate molecules, which act as N independent copies of
the system studied above, as long as the number of both
enzymes greatly exceedsN. Then the number s of modified
substrate molecules S� can be interpreted as a noisy readout
of the enzyme concentration ½E1�. The random variable s is
binomially distributed, with mean μs ¼ NπS� and variance
σ2s ¼ NπS� ð1 − πS� Þ, which implicitly depend on ½E1�.
Thus, this scenario provides a mechanism to measure a
chemical concentration, by exploiting the relation between
s and ½E1�.
Now suppose one makes the observation at some time

that there are s̃ molecules of S�. Supposing ½E2� and all rate
constants assume known, fixed values, one can produce an

estimate c½E1� of ½E1� by choosing c½E1� to be the value of ½E1�
that gives μsð c½E1�Þ ¼ s̃. The variance of the estimate c½E1� so
constructed is often well approximated, when the noise is
small, by [5,39]

σ2e ≈
σ2s

ð∂μs=∂½E1�Þ2
; ð23Þ

where the quantities on the right-hand side should be
evaluated at the true concentration ½E1�. Our result (16)
combined with the probabilistic inequality πS�ð1 − πS�Þ ≤
1=4 then leads to the following bound on the relative error:�

σe
½E1�

�
2 ≳ 4

N tanhðΔμ=4kBTÞ2
: ð24Þ

This result interpolates between bounds on error estab-
lished by Govern and ten Wolde [5,39] in two limits of
resource limitation in cellular sensing systems. That work

(a) (c)

(d)(b)

FIG. 4. Sensitivity of a biochemical switch. Modification-
demodification cycle with (a) a single intermediate or (b) general
enzymology. Perturbations of ½E1�-dependent rates (red arrows)
can be parameterized by blue vertex and edge perturbations.
(c) Single-cycle switchlike behavior of lnðπS�=πSÞ as a function
of lnð½E1�Þ, with redder curves representing larger chemical
driving Δμ. (d) Sensitivity s ¼ j∂ lnðπS�=πSÞ=∂ lnð½E1�Þj as a
function of lnð½E1�Þ for the same values of Δμ, compared to the
predicted bound (22) (dashed lines).
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studies a model of sensing in which cell surface receptors
bind to an extracellular ligand whose concentration the
cell needs to determine. The ligand-bound receptors
then participate in a modification-demodification cycle
like the one we study here, playing the role of E1. See
Appendix G 2 for details.

C. Kinetic proofreading

As a third application, we turn to the effectiveness of
kinetic proofreading [45,46]. A common challenge faced
by biomolecular processes is that of discriminating between
two very similar chemical species. At equilibrium, the
probability of an enzyme E being bound to a substrate S
divided by the probability of that enzyme being free is
expð−ΔÞ, where kBTΔ is the binding (free) energy of the
enzyme-substrate complex ES. Two substrates with very
similar binding energies are constrained to be bound by the
enzyme a similar fraction of the time.
Kinetic proofreading is a scheme to use nonequilibrium

driving to improve discrimination based on binding energy.
One way to quantify the discriminatory ability of a kinetic
network is using the discriminatory index introduced by
Murugan, Huse, and Leibler [47]:

ν ¼ −
∂ lnðπE=πESÞ

∂Δ : ð25Þ

At equilibrium, ν ¼ 1. The simplest nonequilibrium scheme
to increase discrimination is the single-cycle network illus-
trated in Fig. 5(a). Note thatwe suppose the binding energyΔ
appears exclusively in theunbinding rates.Hopfield observes
that, in a certain nonequilibrium limit of the rates, ν → 2 [45].
Our results lead to a constraint on ν that interpolates between
the equilibrium case and this limit.
In the single-cycle network, the variation of the binding

energy Δ is equivalent to the variation of two vertex
parameters (that ofES andES�) and a single-edge parameter
(ES ↔ ES�), leading to the inequality (Appendix G)

jν − 1j ≤ tanhðΔμ=4kBTÞ; ð26Þ

where Fmax ¼ Δμ=kBT is the chemical driving around the
cycle. This bound, which can be saturated, reduces correctly
to ν ¼ 1 at equilibrium and is consistent with ν → 2 in the
limit of strong driving Δμ → ∞.
We can also bound ν in the case of a more general kinetic

proofreading scheme [7,47] in which there are m com-
plexes that can dissociate. Each of the dissociation tran-
sitions can be thought of as crossing a “discriminatory
fence” [47], its rate depending on the binding energy Δ, as
in Fig. 6. We suppose that the dissociation transitions are
the only ones that depend on Δ. We make no assumptions
about the structure of the transition graph on either side of
the fence. In such a network, perturbing Δ is equivalent to
perturbing the edge and vertex parameters on one side of
the fence, forming the subgraph highlighted in blue in
Fig. 6. We then have (Appendix G)

jν − 1j ≤ ðm − 1Þ tanhðFE↔ES=4Þ; ð27Þ

where FE↔ES is the maximum entropy produced to go from
E to ES and back again. Notably, we recover the result
jν − 1j ≤ m − 1 of [47].

IX. CONCLUSION

In this work, we have developed a series of universal
bounds on a nonequilibrium response in terms of the
strength of the nonequilibrium driving. We show that,
for a large class of static perturbations, a result equivalent to
the FDT continues to hold out of equilibrium. For many
other perturbations, we bound the response in terms of the
dimensionless thermodynamic forces, which quantify the
departure from equilibrium.
The illustrations detailed in the previous section dem-

onstrate the potential of our results to unify long-standing
observations about the importance of energy “expenditure”
in many different models. The tasks of making a sharp
molecular switch or a good sensor or discriminating
between two similar ligands all have in common the need
for a large response to a small perturbation. We find new
bounds interpolating between known limits in these

FIG. 5. Bounding the discriminatory index. (a) Graph of a
single-cycle kinetic proofreading network. Perturbations in the
(dimensionless) binding energyΔ can be unraveled as blue vertex
and edge perturbations. (b) Discriminatory index ν plotted against
the thermodynamic affinity jΔμj=kBT for the single-cycle net-
work generated from 30 000 randomly sampled transition rates.
All samples fall within the predicted bound (26) (red line).

FIG. 6. Multistep kinetic proofreading scheme. The collection
of edges with rates that depend on the binding energy Δ specify a
discriminatory fence. Perturbing Δ is equivalent to perturbing
vertex and edge parameters of the subgraph labeled in blue.
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systems and show how they all descend from our results on
vertex and edge perturbations.
A more detailed analysis of the conditions under which

our bounds are saturated would lead to design principles for
optimal response. Our preliminary investigation identified
single cycles as ideal when a single-edge parameter is
varied. We expect that for more complex perturbations, the
most highly responsive systems may have a more compli-
cated structure.
An important theme highlighted by our work is that

sensitivity is limited not only by nonequilibrium driving but
also, very strictly, by network size and structure. The total
number of transitions in a biochemical network limits the
response, because the response to the scaling of any one
rate is bounded by 1=4. At the same time, our multiedge
results show how many enlargements or complications of
networks (e.g., departure from Michaelis-Menten assump-
tions in the covalent modification cycle) do not confer
any advantage. In this sense, our results build on the work
of others who studied similar questions in the context
of kinetic proofreading [47] and biochemical copy proc-
esses [48].
Our results point to numerous other extensions, includ-

ing bounds on the response of currents with implications
for the Green-Kubo and Einstein relations [49–51]. We
have also focused on results that hold in general, not taking
into account possible characteristic structures in the graph
of states and transitions, which are present, for example, in
many natural examples, such as chemical reaction net-
works. The study of such extensions and special cases
strikes us as a promising direction for future work.
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APPENDIX A: MATRIX-TREE THEOREM

The key tool that we apply in our analysis of non-
equilibrium response is the matrix-tree theorem (MTT). To
state the theorem, we must introduce some additional
notation and concepts.
For any set of directed edges S ¼ fi → j; k → l;…g, we

define the weight wðSÞ to be the product of the weights of
the edges:

wðSÞ ¼ WjiWlk…: ðA1Þ

The weight wðHÞ of any subgraph H we define to be the
weight of its edge set.
We also need to introduce spanning trees, which are

connected subgraphs of a graph G that contain every vertex
but have no cycles; see Fig. 7. Every graph that is
connected (as is, by assumption, the transition graph of

our system) has at least one spanning tree. For any spanning
tree T and vertex r of G, there is a unique way to direct the
edges of T so that they all “point toward” r, which we then
call the “root.” The resulting directed graph, which wewrite
as Tr, is a rooted spanning tree of G. The steady-state
distribution π is given explicitly by the MTT [29,52–56] in
terms of weights of rooted spanning trees of G.
Matrix-tree theorem.—Let W be the transition rate

matrix of an irreducible continuous-time Markov chain
with N states. Then the unique steady-state distribution is

πk ¼
1

N

X
spanning trees

T of G

wðTkÞ; ðA2Þ

whereN ¼ P
N
k¼1

P
T wðTkÞ is the normalization constant.

This theorem, also known as the Markov chain tree
theorem, is a consequence of a result of Tutte [52] and has
been rediscovered repeatedly in different literature; see,
e.g., Refs. [29,53–56] for further discussion.
The MTT offers a graphical representation of the steady-

state distribution that provides a convenient method for
organizing the structure of the solution. We illustrate this
result in Fig. 8.

APPENDIX B: VERTEX PERTURBATIONS

Theorem 1.—

∂πi
∂Ek

¼
�−πkð1 − πkÞ if i ¼ k;

πkπi if i ≠ k:
ðB1Þ

Proof.—The matrix-tree theorem implies that πi can be
expressed as the ratio of sums of weights of rooted
spanning trees. So, to evaluate ∂πi=∂Ek, we need to

FIG. 7. Spanning trees. All spanning trees for our four-state
illustrative graph.

FIG. 8. Matrix-tree theorem. Graphical representation of the
steady-state probability π1 as the sum of all spanning trees rooted
at 1 (blue vertex).
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understand in which spanning trees, and in what form, Ek
appears. The only rates that depend on Ek are rates of
transitions out of k, W�k ¼ expðEk − B�k þ F�k=2Þ; see
Fig. 2. Furthermore, any rooted spanning tree has exactly
one edge directed out of k, unless the tree is rooted at k, in
which case it has none. These observations allow us to
group spanning trees in the MTT expression for the steady-
state distribution in a convenient manner as illustrated
in Fig. 9.
Thus, for i ¼ k, the matrix-tree theorem implies that

πk ¼
a

aþ beEk
; ðB2Þ

where

a ¼
X
T

wðTkÞ; beEk ¼
X
j≠k

X
T

wðTjÞ: ðB3Þ

Here, a is the sum of weights of all spanning trees rooted at
k—these do not depend on Ek, since they have no edge
directed out of k—and beEk is the sum of weights of all
spanning trees not rooted at k—each of these has exactly
one factor of Ek, making b independent of Ek.
If i ≠ k, the MTT yields by a similar argument

πi ¼
ceEk

aþ beEk
; ðB4Þ

with

ceEk ¼
X
T

wðTiÞ: ðB5Þ

The theorem now follows by differentiating these
expressions. When i ≠ k,

∂πi
∂Ek

¼ ceEk

aþ beEk
−

ceEkbeEk

ðaþ beEkÞ2

¼ ceEk

aþ beEk

�
a

aþ beEk

�
¼ πiπk; ðB6Þ

and similarly for i ¼ k. ▪
Corollary 1.—If i ≠ j,

∂ ln ðπi=πjÞ
∂Ek

¼

8>><
>>:

−1 if i ¼ k;

1 if j ¼ k; and

0 otherwise:

ðB7Þ

Proof.—First, note that

∂ ln ðπi=πjÞ
∂Ek

¼ 1

πi

∂πi
∂Ek

−
1

πj

∂πj
∂Ek

: ðB8Þ

Now we apply Theorem 1. If i ¼ k, then j ≠ k, and
∂ ln ðπi=πjÞ=∂Ek ¼ −ð1 − πkÞ − πk ¼ −1. If j ¼ k, then
i ≠ k, and ∂ ln ðπi=πjÞ=∂Ek ¼ πk þ ð1 − πkÞ ¼ 1. And
if neither i nor j equal k, then ∂ ln ðπi=πjÞ=∂Ek ¼
πk − πk ¼ 0. ▪

APPENDIX C: SYMMETRIC
EDGE PERTURBATIONS

1. Single edge

In this Appendix, we bound the response to the pertur-
bation of a single symmetric edge parameter in terms of the
cycle forces driving the system out of equilibrium.
First, we prove a general bound on the response of a ratio

of observables. Equations (16) and (17) then follow as
corollaries by choosing suitable observables.
Theorem 2.—Consider any two observables A;B ∈ RN

≥0
with at least one positive entry. Then,���� ∂

∂Bmn
ln
hAi
hBi

���� ≤ tanh

�
Fmax

4

�
; ðC1Þ

FIG. 9. Vertex perturbation. Groupings of spanning trees with roots labeled in blue for π1 (i ¼ 1) utilized in the vertex perturbation
derivation when the perturbed vertex is k ¼ 4, labeled in red. Affected rates are labeled in red.
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where Fmax is the magnitude of the cycle force that
is the largest in magnitude, among all those associated
to cycles containing the distinguished edge m ↔ n (in
either direction).
Our proof relies on the following technical lemma,

which we prove in Appendix D.
Lemma 1: “Tree surgery.”—Let Emn be the set of

spanning trees of G containing the distinguished (undi-
rected) edgem ↔ n. Then, for any two distinct vertices i, j
of G,

����
P

T∈Emn

P
S∉Emn

wðTiÞwðSjÞP
T∈Emn

P
S∉Emn

wðTjÞwðSiÞ
���� ≤ expðFmaxÞ: ðC2Þ

Proof of Theorem 2.—The matrix-tree theorem offers a
graphical representation of the steady-state distribution in
terms of rooted spanning trees. This observation suggests
that we can segregate those contributions to steady-state
averages that contain Bmn by selecting those (undirected)
spanning trees in G that contain the edge emn. Let us call
this set Emn.
Then, by the matrix-tree theorem, we can write

hAi
hBi ¼

P
iAiπiP
jBjπj

¼ a1 þ a0
b1 þ b0

; ðC3Þ

where

a1¼
X
i

X
T∈Emn

AiwðTiÞ; a0¼
X
i

X
S∉Emn

AiwðSiÞ; ðC4Þ

b1¼
X
i

X
T∈Emn

BiwðTiÞ; b0¼
X
i

X
S∉Emn

BiwðSiÞ; ðC5Þ

where a1 and b1 are linear in expð−BmnÞ, since they contain
edge emn, whereas a0 and b0 are independent of Bmn. An
illustrative example is presented in Fig. 10.

Differentiating yields

∂
∂Bmn

ln
hAi
hBi ¼ − b0a1 − a0b1

ðb0 þ b1Þða0 þ a1Þ
: ðC6Þ

Now note that by the inequality of arithmetic and geometric
means (AM-GM) the denominator is bounded as

ðb0 þ b1Þða0 þ a1Þ ¼ b0a0 þ b1a0 þ b1a1 þ b0a1

≥ b0a1 þ b1b0 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0b0a1b1

p
¼

� ffiffiffiffiffiffiffiffiffiffi
b0a1

p
þ

ffiffiffiffiffiffiffiffiffiffi
a0b1

p �
2
: ðC7Þ

Since the numerator b0a1 − a0b1 ¼ ð ffiffiffiffiffiffiffiffiffiffi
b0a1

p
−

ffiffiffiffiffiffiffiffiffiffi
a0b1

p Þ×
ð ffiffiffiffiffiffiffiffiffiffi

b0a1
p þ ffiffiffiffiffiffiffiffiffiffi

a0b1
p Þ, the bound (C7) implies���� ∂

∂Bmn
ln
hAi
hBi

���� ≤
����

ffiffiffiffiffiffiffiffiffiffi
b0a1

p
−

ffiffiffiffiffiffiffiffiffiffi
a0b1

pffiffiffiffiffiffiffiffiffiffi
b0a1

p þ ffiffiffiffiffiffiffiffiffiffi
a0b1

p
���� ¼ tanh

�
1

4

���� ln b0a1a0b1

����
�
:

ðC8Þ

To complete the proof, we need to bound the ratio
b0a1=a0b1 by expðFmaxÞ. To establish this bound, we
match up terms above and below, writing the fraction as

b0a1
a0b1

¼
P

i

P
j ½AiBj

P
T∈Emn

P
S∉Emn

wðTiÞwðSjÞ�P
i

P
j ½AiBj

P
T∈Emn

P
S∉Emn

wðSiÞwðTjÞ�
: ðC9Þ

The desired result is now a consequence of the inequalityP
n
i¼1 xiP
n
i¼1 yi

¼
P

n
i¼1 ðxi=yiÞyiP

n
i¼1 yi

≤ max
i

�
xi
yi

�
; ðC10Þ

to give���� b0a1a0b1

���� ≤ max
i;j

����
P

T∈Emn

P
S∉Emn

wðTiÞwðSjÞP
T∈Emn

P
S∉Emn

wðSiÞwðTjÞ
����; ðC11Þ

followed by Lemma 1. ▪
From Theorem 2, we readily obtain our bounds on

steady-state response. For Eq. (17),
Corollary 2.—���� ∂ ln ðπi=πjÞ∂Bmn

���� ≤ tanh

�
Fmax

4

�
: ðC12Þ

Proof.—Choose the observables in Theorem 2 to be
Al ¼ δil and Bl ¼ δkl, where δij is the Kronecker delta. ▪
We also have
Corollary 3.—Let πX ¼ P

k∈X πk be the total probability
of a set of states X. Then,���� ∂πX

∂Bmn

���� ≤ πXð1 − πXÞ tanh
�
Fmax

4

�
: ðC13Þ

FIG. 10. Symmetric edge perturbation. Groupings of spanning
trees used in the derivation of the symmetric edge perturbation
bound for the ratio of observables π1=π4 with perturbed edge
parameter B12. Roots are labeled in blue, and affected rates are
highlighted in red.
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Proof.—Choose the observables in Theorem 2 to be
Ai ¼ δiðXÞ and Bi ¼ 1 − δiðXÞ, where the indicator
δiðXÞ ¼ 1 if i ∈ X and δiðXÞ ¼ 0 otherwise. Note that
we then have hAi ¼ πX and hBi ¼ 1 − πX. ▪
If X ¼ fig consists of only a single state, we recover the

bound (16).

2. Multiple edges

In this section, we derive our inequality for the response
to perturbations by multiple edge parameters Eq. (20). The
proof proceeds in two steps. We first prove a bound on an
arbitrary set of edges S from which Eq. (20) and other
results are ready corollaries.
Here, the magnitude of response is bounded by a

different function Fi↔j of cycle forces. The quantity
Fi↔j is defined for any graph G and vertices i and j to be

Fi↔j ¼ max
Pi→j;Pj→i

���� lnwðPi→j ∪ Pj→iÞ
wðP�

i→j ∪ P�
j→iÞ

����; ðC14Þ

where Pi→j is a (non-self-intersecting) path from i to j,
Pj→i is a (non-self-intersecting) path from j to i, and the
superscript * denotes the reverse path.
Theorem 3.—Let S be a set of edges, and define cmax to

be the size of the largest intersection S has with any
spanning tree of G. Similarly, define cmin to be the size of
the smallest such intersection. Then,����X
emn∈S

∂
∂Bmn

ln

�
πi
πj

�����≤ ðcmax−cminÞtanh
�
Fi↔j

4

�
: ðC15Þ

The appearance of Fi↔j in this result stems from Lemma
2, that we rely on here and prove in Appendix D.
Lemma 2: “Cycle flip only.”—For any spanning trees T,

S and vertices i, j of G,

wðTiÞwðSjÞ
wðTjÞwðSiÞ

≤ expðFi↔jÞ: ðC16Þ

We also rely on the following lemma, which generalizes
the first part of the proof of Theorem 2.
Lemma 3.—For any symbols fang; fbng,���� ð
Pj

n¼i nanÞ
Pj

n¼i bn − ðPj
n¼i nbnÞ

Pj
n¼i anPj

n¼i an
Pj

n¼i bn

����
≤

Xj

m¼iþ1

tanh

�
1

4
ln

����
Pj

n¼m an
P

m−1
n¼i bnPj

n¼m bn
P

m−1
n¼i an

����
�
: ðC17Þ

Proof.—First, note that we can rearrange the sum as

Xj

n¼i

nan ¼
Xj

n¼i

Xn
m¼1

an ¼ i
Xj

n¼i

an þ
Xj

m¼iþ1

Xj

n¼m

an; ðC18Þ

which is illustrated in Fig. 11. As a result, we have

ðPj
n¼i nanÞ

Pj
n¼i bn − ðPj

n¼i nbnÞ
Pj

n¼i anPj
n¼i an

Pj
n¼i bn

¼
Xj

m¼iþ1

ðPj
n¼m anÞ

Pj
n¼i bn − ðPj

n¼m bnÞ
Pj

n¼i anPj
n¼i an

Pj
n¼i bn

¼
Xj

m¼iþ1

ðPj
n¼m anÞ

P
m−1
n¼i bn − ðPj

n¼m bnÞ
P

m−1
n¼i an

ðPm−1
n¼i an þ

Pj
n¼m anÞð

P
m−1
n¼i bn þ

Pj
n¼m bnÞ

:

ðC19Þ

A comparison with Eqs. (C6)–(C8) in the proof of
Theorem 2, together with the triangle inequality, establishes
the desired result. ▪
Now we are ready to proceed with the proof of the

theorem.
Proof of Theorem 3.—Define

ac ¼
X

T∶jT∩Sj¼c

wðTiÞ; bc ¼
X

T∶jT∩Sj¼c

wðTjÞ; ðC20Þ

so that we have, for all c,

X
emn∈S

∂ac
∂Bmn

¼ −cac;
X
emn∈S

∂bc
∂Bmn

¼ −cbc: ðC21Þ

By the matrix-tree theorem, the derivative we wish to
bound can be written in terms of these quantities as

X
emn∈S

∂
∂Bmn

ln

�
πi
πj

�
¼

X
emn∈S

∂
∂Bmn

ln

P
TwðTiÞP
TwðTjÞ

¼
X
emn∈S

∂
∂Bmn

ln

Pcmax
c¼cmin acPcmax
c¼cmin bc

: ðC22Þ

Expanding the derivative and applying Lemma 3 yields

FIG. 11. Illustration of the identity (C18).
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����X
emn∈S

∂
∂Bmn

ln

�
πi
πj

�����
≤

Xcmax

m¼cminþ1

tanh

�
1

4
ln

����
Pcmax

n¼m an
P

m−1
n¼cmin

bnPcmax
n¼m bn

P
m−1
n¼cmin

an

����
�
: ðC23Þ

To prove the theorem, all that remains is to demonstrate
that Pcmax

n¼m an
P

m−1
n¼cmin

bnPcmax
n¼m bn

P
m−1
n¼cmin

an
≤ expðFi↔jÞ ðC24Þ

holds for all m. This result follows by an application of
Lemma 2. So we have

����X
emn∈S

∂
∂Bmn

ln
πi
πj

���� ≤ Xcmax

m¼cminþ1

tanh

�
Fi↔j

4

�

¼ ðcmax − cminÞ tanh
�
Fi↔j

4

�
; ðC25Þ

as desired. ▪
Theorem 3 has a number of simple corollaries.
Corollary 4.—If G has r independent cycles, then, for

any set S of edges,����X
emn∈S

∂
∂Bmn

ln

�
πi
πj

����� ≤ r tanh

�
Fi↔j

4

�
: ðC26Þ

Proof.—Let m be the number of edges in G. The largest
possible intersection of a spanning tree and S cannot exceed
jSj in size, so we have cmax ≤ jSj. Furthermore, each
spanning tree of G has exactlym − r edges. So the smallest
possible intersection is realized if all r edges a spanning
tree excludes are edges in the set S, which means
cmin ≥ jSj − r. Therefore, cmax − cmin ≤ r, and the corol-
lary follows from Theorem 3. ▪
Corollary 5.—LetH be a subgraph ofG, and writeW for

the set of vertices of H incident to an edge not in H. Let S
be the edge set of H. Then,����X

emn∈S

∂
∂Bmn

ln

�
πi
πj

����� ≤ ðjWj − 1Þ tanh
�
Fi↔j

4

�
: ðC27Þ

Proof.—Consider a spanning tree T of G. Viewed as a
subgraph of H, T is still at least a spanning forest (i.e.,
it may no longer be connected but still has no cycles
and includes every vertex of H), with no more than jWj
component trees. To see this fact, suppose it had jWjþ1
component trees. In this case, one component would have
to be disconnected from all the vertices in W (if every
component is connected to a vertex in jWj, there can be at
most jWj, as components cannot be connected to each
other). But, in that case, T (as a subgraph of G) is

disconnected. This is a contradiction, because as a spanning
tree, T must be connected.
Let n be the number of vertices in H. The number of

edges in a spanning forest is always the number of vertices
in the forest minus the number of components (trees in the
forest). This fact means that, for our graph G, the size
of the intersection of S and the edge set of T is restri-
cted to lie between n − 1 ¼ cmax or n − jWj ¼ cmin. By
Theorem 3, this implies the result. ▪

APPENDIX D: PROOFS OF
THE ROOT-SWAPPING LEMMAS

In the course of proving our results above, we come
across ratios of products of spanning tree weights, such asP

T∈Emn

P
S∉Emn

wðTiÞwðSjÞP
T∈Emn

P
S∉Emn

wðTjÞwðSiÞ
; ðD1Þ

which we bound using Lemmas 1 and 2, yielding our
theorems. Here, we present proofs of these key lemmas.
The arguments depend on the existence of invertible
mappings between the pairs of spanning trees in the
numerator to pairs of spanning trees in the denominator,
which have their roots “swapped”: ðTi; SjÞ → ðT 0

j; S
0
iÞ. We

construct these mappings explicitly, but first we set out
some relevant notation and definitions.
First, we find it helpful in this section to use the standard

notation sðeÞ (the source) for the vertex at the tail of a
directed edge e and tðeÞ (the target) for the vertex at the
head of e, where the arrow points. In addition, the graph
formed by the removal of the edge h from a graph H, i.e.,
by the deletion of h, is denoted Hnh, and the graph formed
by adding an edge h to H is denoted H ∪ h.
Second, we need to define a new kind of spanning tree.

We have already introduced spanning trees, as well as the
notion of a spanning tree Ti rooted at vertex i. Recall that,
in a rooted spanning tree, every edge is directed toward the
root i (since a tree has no cycles, this direction is defined
unambiguously). Generalizing from this fact, we define a
doubly-rooted spanning tree, schematically depicted in
Fig. 12(a). We start with a spanning tree S and two vertices
i and j. We first note that all the edges in the rooted trees Si
and Sj are oriented in the same direction except for those
edges along the unique path between i and j. This result
inspires us to pick a vertex k on this path and define a
doubly-rooted spanning tree Sij;k with branch point k to be
the spanning tree S with every edge directed as it is in Si
and Sj—when those directions are the same—and other-
wise directed toward i if between k and i and toward j if
between k and j. One can view a (singly) rooted spanning
tree Sj as a sort of “degenerate” doubly-rooted tree Sij;i
with branch point i.
Our mappings are then built from repeated applications

of the following operations on pairs of the form ðTb; Smn;bÞ,
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where Tb is a spanning tree rooted at some vertex b and
Smn;b is a doubly-rooted spanning tree with roots m and n
and branch point b:

(i) Cycle flip.—Consider the unique edge e pointing out
of b toward n in Smn;b. Reroot the tree Tb to the target
tðeÞ to form TtðeÞ and flip the edge e → e� to form
Smn;tðeÞ ¼ ðSmn;bneÞ ∪ e�. Output ðTtðeÞ; Smn;tðeÞÞ.

(ii) Edge swap.—Consider the unique edge e pointing
out of b toward n in Smn;b. Let f be the first edge,
along the unique directed path in Tb from tðeÞ to b,
that reconnects Smn;bne. Swap these edges to form
T 0
sðfÞ ¼ ðTbnfÞ ∪ e and S0mn;sðfÞ ¼ ðSmn;bneÞ ∪ f.

Output ðT 0
sðfÞ; S

0
mn;sðfÞÞ.

The output of each of these operations is another pair
ðT 0

b0 ; S
0
mn;b0 Þ consisting of a tree rooted at b0 and a doubly

rooted tree with branch point b0 (see Fig. 12 for an
illustration of this output in the case of edge swap).
Furthermore, no edges are reoriented in the edge swap,
although edges are exchanged between T and S. In a
general cycle flip, no edges are exchanged, and the edges
that are reoriented form the single cycle obtained from the
union of e with the unique path in T from tðeÞ to sðeÞ. In
the degenerate case where the path in T from tðeÞ to sðeÞ
consists of the single edge e�, cycle flip and edge swap are
equivalent.
Notably, both of these operations are invertible, in the

sense that, given the output of either and knowledge of
which was applied, we can uniquely recover the original
pair ðTb; Smn;bÞ from ðT 0

b0 ; S
0
mn;b0 Þ.

(i) To invert the cycle flip, all we need is to identify the
original edge e—it is the reverse of the unique edge
pointing out of b0 toward m. Note that sðeÞ ¼ b, the
original branch point of S and root of T.

(ii) To invert the edge swap, we need to identify the
original edges e and f. The unique edge pointing out
of b0 toward m is f. The original e is the first edge,
going back along the path in T 0

b0 from sðfÞ ¼ b0 to
tðfÞ, that reconnects S0mn;b0 nf.

Lemma 1: “Tree surgery.”—Let Emn be the set of
spanning trees of G containing the distinguished (undi-
rected) edgem ↔ n. Then, for any two distinct vertices i, j
of G,

����
P

T∈Emn

P
S∉Emn

wðTiÞwðSjÞP
T∈Emn

P
S∉Emn

wðTjÞwðSiÞ
���� ≤ expðFmaxÞ; ðD2Þ

where Fmax is the magnitude of the cycle force that is the
largest in magnitude, among all those associated to cycles
containing the distinguished edge m ↔ n (in either
direction).

FIG. 13. Tree surgery. Illustration of the steps of the iterative
tree surgery described in the proof of Lemma 1 applied to a
particular pair of rooted spanning trees Ti and Sj of a graph G
with 11 vertices. The sequence of edge swap and cycle flip
operations applied has the effect of swapping the roots of the trees
without swapping the distinguished edge (blue). At intermediate
stages, S becomes a doubly-rooted tree whose branch point
(labeled in green, also the root of T) moves between its roots i and
j (labeled in red). The set of directed edges in the final pair of
trees differs from the set in the original pair by the edges in the
cycle (which contains the distinguished edge) flipped in the
second step.

(a) (b) (c)

FIG. 12. Effect of edge swap on Smn;b. (a) The structure of
Smn;b, a doubly-rooted tree with roots m, n and branch point b.
The edge e is the unique edge pointing out of sðeÞ ¼ b toward n.
(b) Removing the edge e disconnects Smn;b, since it is a tree. The
edge f from Tb that reconnects it can point from the component
containing n to any part of the component containing m. It is also
possible that f ¼ e�. (c) No matter where f points, removing e
and adding f to Smn;b yields a new doubly-rooted tree S0mn;b0 , with
branch point b0 ¼ sðfÞ.
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Proof.—To prove this result, it is sufficient to find a
bijection between terms in the numerator and those in the
denominator, such that each term and its partner are equal
or differ by a factor of expðFCÞ, where FC is the cycle force
associated to a cycle C that contains the distinguished edge.
Consider any term wðTiÞwðSjÞ in the numerator. We map

it to a term in the denominator as follows. Starting with the
pair ðTi; SjÞ, viewing Sj as a doubly-rooted tree Sij;i, we
repeatedly apply edge swap until the root of the rooted tree
(equivalently, the branch point of the doubly-rooted tree)
equals j, unless the edge f that would be removed from Tb
in the process is the distinguished edge (m → n or n → m).
In that case, apply cycle flip in that step, so that the
distinguished edge is not exchanged (Fig. 13).
It is guaranteed that this iterative process eventually

terminates, because at every step the branch point of the
doubly-rooted tree Sij;b moves closer to j, and the part of
Sij;b rooted at i grows. Eventually, the branch point hits j,
and the edge swap and cycle flip operations cannot be
applied.
At the end of this iterative process, the initial pair ðTi; SjÞ

has been transformed into a pair ðT 0
j; S

0
iÞ, whose associated

weight wðT 0
jÞwðS0iÞ appears in the denominator of Eq. (D2).

This transformation defines a bijection between terms in
the numerator and terms in the denominator. To see that the
map is invertible, we note that every step along the way (an
application of edge swap or cycle flip) is invertible, as we
argue above. Therefore, as long as it is possible to uniquely
determine which is applied at each step, the whole sequence
of operations is invertible. But this identification is pos-
sible, because when inverting a step, we can find the edge f
that would have been removed from T by edge swap in that
step and that determines whether or not edge swap or cycle
flip is, in fact, applied in that step. Namely, cycle flip is
applied if f is the distinguished edge, and edge swap is
applied otherwise.
Having found this bijection between terms, it remains

only for us to ask, what is the ratio of the terms wðTiÞwðSjÞ
and wðT 0

jÞwðS0iÞ? The operation edge swap has no effect on
this product of weights, since it merely moves edges
between T and S. However, when cycle flip is applied,
edges change the way they are directed, and the weight
wðTiÞwðSjÞ changes by a factor of expðFCÞ, where C is the
(directed) cycle that gets flipped. Since we apply cycle flip
only if the path in Tb from tðeÞ to its root contains m ↔ n,
C is always a cycle containing m ↔ n. Furthermore, in the
iteration described above, cycle flip is applied at most once.
To see this, note that the original tree Ti contains either
m → n or n → m, never both. Furthermore, the edge f that
comes up in edge swap always points from the part of S
rooted at j to the part rooted i. Thus, if cycle flip flips the
distinguished edge to point the other way, it will never
come up as f in edge swap again, because the part of S
rooted at i only ever grows during this algorithm.

So we have

wðTiÞwðSjÞ
wðT 0

jÞwðS0iÞ
¼ expðFCÞ ðD3Þ

for some cycle C that contains the edge m ↔ n, as desired.
To prove the inequality (D2), we now match up terms

above and below using this bijective tree surgery, putting
them in an order such that each term above has the same
position as its partner (e.g., image) below. The lemma then
follows from the inequality:

P
n
i¼1 xiP
n
i¼1 yi

¼
P

n
i¼1 ðxi=yiÞyiP

n
i¼1 yi

≤ max
i

�
xi
yi

�
: ðD4Þ

▪
Lemma 2: “Cycle flip only.”—For any spanning trees

T, S and vertices i, j of G,

wðTiÞwðSjÞ
wðTjÞwðSiÞ

≤ expðFi↔jÞ; ðD5Þ

where Fi↔j is the largest possible value of
ln½wðPi→j ∪ Pj→iÞ=wðP�

i→j ∪ P�
j→iÞ�, where Pi→j is a

(non-self-intersecting) path from i to j and Pj→i is a (non-
self-intersecting) path from j to i, and the superscript *
denotes the reverse orientation.
Proof.—As above, we consider the pair ðTi; SjÞ but this

time just apply cycle flip to it repeatedly until it can no
longer be applied (because the branch point of S has
become j). The effect of these steps is to “swap the roots”
of the two trees Ti and Sj, changing the directions of edges
without changing the underlying (undirected) spanning
trees. Along any undirected spanning tree T, there is a
unique directed path Tv→w from any vertex v to any other
vertex w. “Rerooting” a tree changes its weight as follows:

wðTvÞwðTv→wÞ ¼ wðTwÞwðTw→vÞ; ðD6Þ

which implies

wðTiÞwðSjÞ ¼ wðTjÞwðSiÞ
wðSi→jÞwðTj→iÞ
wðSj→iÞwðTi→jÞ

: ðD7Þ

The fraction appearing here is of the form wðPi→j ∪ Pj→iÞ=
wðP�

i→j ∪ P�
j→iÞ, as required in the statement, establishing

the result. ▪
It is important to note that neither Lemma 1 nor Lemma 2

implies the other, although their proofs can be viewed as
depending on a common technique.
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APPENDIX E: SATURATING THE
INEQUALITIES

We have established a number of thermodynamic bounds
on a steady-state response to edge perturbations. It remains
an open question whether we can saturate these inequal-
ities. In this section, we exhibit one example where we can
saturate our bounds—the case of a system whose transition
graph G consists of a single cycle C with cycle force
FC ¼ Fmax. While we are unable to prove this example is
the only way to saturate our inequalities, we do argue for its
general relevance.
To keep the discussion as straightforward and precise as

possible, we focus on the ratio bound in Eq. (17), as this
bound turns out to be the simplest to investigate. We first
specialize to the case where we vary the edge parameter
Bmn associated to the edge emn and ask for the response of
the ratio of steady-state probabilities of the adjacent states
m and n. In this case, the series of inequalities that lead to
our bound can be summarized as���� ∂ ln ðπm=πnÞ∂Bmn

���� ¼
���� b0a1 − a0b1
ðb0 þ b1Þða0 þ a1Þ

����
≤

AM-GM
tanh

�
1

4

���� ln b0a1a0b1

����
�

≤
“tree surgery”

tanhðFC=4Þ; ðE1Þ

where we use the notation

a1 ¼
X
T∈Emn

wðTmÞ; a0 ¼
X
S∉Emn

wðSmÞ; ðE2Þ

b1 ¼
X
T∈Emn

wðTnÞ; b0 ¼
X
S∉Emn

wðSnÞ: ðE3Þ

The first inequality in Eq. (E1) is an application of the AM-
GM inequality, and the second comes about from our tree
surgery argument of Lemma 1. We address each in turn.
Let us begin with the tree surgery inequality, which

comes about from analyzing the ratio

b0a1
a0b1

¼
P

T∈Emn

P
S∉Emn

wðTmÞwðSnÞP
T∈Emn

P
S∉Emn

wðTnÞwðSmÞ
: ðE4Þ

The tree surgery provides an invertible mapping between
the terms in the numerator and those in the denominator.
For the case of a single cycle with vertices m, n adjacent to
the distinguished edge emn, we have

wðTmÞwðSnÞ ¼ wðTnÞwðSmÞeFC ðE5Þ

for all T ∈ Emn and S ∉ Emn. Thus, every term in the
numerator is proportional to a term in the denominator with
the same proportionality constant:

b0a1
a0b1

¼
P

T∈Emn

P
S∉Emn

wðTnÞwðSmÞeFCP
T∈Emn

P
S∉Emn

wðTnÞwðSmÞ
¼ eFC: ðE6Þ

Thus, the tree surgery inequality is exactly satisfied in
this case.
Equality in the AM-GM inequality is reached when

a0b0 ¼ a1b1: ðE7Þ

While there are numerous choices for the rates that cause
this equality to be satisfied, we just exhibit a particular one
to show that it is possible. To do so, we first make a
simplifying observation: Each term on both sides of the
equality is a product of the weight of a spanning tree rooted
at m and one that is rooted at n. Therefore, each term has
exactly the same dependence on the vertex parameters Ej,
so we can cancel all the Ej on both sides of Eq. (E7). Thus,
all we need to do is fix the symmetric and asymmetric edge
parameters. We first fix the asymmetric edge parameters by
choosing all the weight of the cycle force to be on the
perturbed edge emn:

Fkl ¼ −Flk ¼
�
FC k ¼ m; l ¼ n;

0 else:
ðE8Þ

Solving Eq. (E7) for the symmetric edge parameters then
leads to the relation

eBmn ¼
X
eij∈G
ij≠mn

eBij : ðE9Þ

Thus, it is possible to saturate our inequality for the
response of the ratio lnðπm=πnÞ to perturbations of Bmn.
This case may seem rather special, but we believe the

situation is more general than it first appears, since it is
possible for the dynamics on more complicated graphs G
(e.g., with multiple cycles) to effectively have this “single-
cycle” behavior. To see this possibility, note that if the rates
of transitions in G are very small, apart from those around
a single cycle containing the perturbed edge emn, then
the graph is effectively composed of a single cycle, for the
purposes of understanding response of the states on the
cycle. In addition, if we look at the response of ratios of
arbitrary states on the cycle, such as lnðπi=πjÞ, again the
dynamics can effectively reproduce the situation discussed
above, where we focus on the vertices adjacent to emn. This
result is possible because, if the rates along the unique paths
from i to m and j to n on the cycle are extremely fast, the
states along these paths rapidly reach a local steady-state
distribution. The two paths then act as two “effective states”
adjacent to the perturbed edge emn.
These arguments suggest that, for a general graph G,

there are limits of the rates that give rise to a response
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approaching arbitrarily closely the bound set by
Corollary 2.

APPENDIX F: ASYMMETRIC EDGE
PERTURBATION INEQUALITY

Our asymmetric edge perturbation bound follows from a
more general inequality for arbitrary perturbations of a
single rate.
Proposition 1.—

���� ∂πk
∂ lnWij

���� ≤ πkð1 − πkÞ: ðF1Þ

Proof.—By the matrix-tree theorem, we can write

πk ¼
aWij þ b

cWij þ d
; ðF2Þ

where a, b, c, and d are non-negative quantities formed
from sums of weights of rooted spanning trees that do not
depend on Wij. By normalization of probability πk ≤ 1, so
we have c ≥ a, d ≥ b. Differentiating these expressions
yields

∂πk
∂ lnWij

¼ ðad − bcÞWij

ðcWij þ dÞ2 ; ðF3Þ

which after rearranging gives

���� ∂πk
∂ lnWij

����¼ πkð1−πkÞ
���� d−b
ðc−aÞWijþðd−bÞ−

b
aWijþb

����;
ðF4Þ

but the value of each of the two fractions on the right-hand
side is not smaller than zero or greater than one, which
means their difference is not greater than one in magnitude,
implying the result. ▪
Corollary 6.— ���� ∂πk∂Fij

���� ≤ πkð1 − πkÞ: ðF5Þ

Proof.—The asymmetric edge parameter Fij appears in
two rates,Wij andWji. This fact implies, by the chain rule,

∂πk
∂Fij

¼ 1

2

�
Wij

∂πk
∂Wij

−Wji
∂πk
∂Wji

�
; ðF6Þ

which implies, by the triangle inequality,���� ∂πk∂Fij

���� ≤ 1

2

����Wij
∂πk
∂Wij

����þ 1

2

����Wji
∂πk
∂Wji

����: ðF7Þ

Now applying Proposition 1 establishes the desired
result. ▪

APPENDIX G: BIOCHEMICAL APPLICATIONS

So far, we have stated and proved equalities and inequal-
ities about the response to perturbations of physical systems
whose dynamics are well modeled as continuous in time
and Markovian over a finite state space. In this section, we
describe specializations of these general results to two well-
known motifs found in biochemical networks. In each case,
we find an inequality relating some figure of merit to a
chemical potential difference driving the network out of
equilibrium (for example, Δμ ¼ μATP − μADP − μPi for
ATP hydrolysis).
There are several ways that studying a biochemical

network might lead us to consider a linear time evolution
equation like Eq. (1),

_piðtÞ ¼
XN
j¼1

WijpjðtÞ; ðG1Þ

with
P

i Wij ¼ 0 for all j. First, the chemical master
equation, which governs the evolution of the distribution
over counts ðnA; nB;…Þ of chemical species A; B;…, is of
this form. For chemical systems with many particles, the
number of states N in such a description is enormous.
However, for some chemical reaction networks, the linear
equation (1) arises as the rate equation governing the
deterministic evolution of the concentrations of chemical
species. As emphasized by Gunawardena [57,58], this
generic situation can arise from strong timescale separation.
When the rate equation of a reaction network is of the
form (1), we can equivalently view it as the master equation
of a continuous-time Markov chain describing the stochas-
tic transitions of a single molecule subject to a set of
effectively monomolecular reactions [56,59]. Whichever
interpretation we take, the mathematics that arises is the
same, and our results can be put to work.

1. Covalent modification cycle

Goldbeter and Koshland [35] study a model of the
covalent modification and demodification of a substrate
by two enzymes, assuming the action of both enzymes
obeys mass-action kinetics with a single intermediate
complex and no product rebinding:

E1 þ S ↔ E1S → S� þ E1;

E2 þ S� ↔ E2S → Sþ E2: ðG2Þ
The total substrate concentration Stot ¼ ½S� þ ½S�� þ
½E1S� þ ½E2S� is conserved in these reactions, as are the
enzyme totals E1;tot¼½E1�þ½E1S� and E2;tot¼ ½E2�þ ½E2S�.
In the limit of saturating substrate Stot ≫ E1;tot; E2;tot, the
kinetics are effectively Michaelis-Menten in form, and the
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steady-state ratio ½S��=½S� can exhibit unlimited sensitivity
to changes in E1;tot and E2;tot [35].
Sensitivity of the steady state to changes in enzyme

concentrations is possible only out of equilibrium [40]. In
Eq. (G2), the nonequilibrium nature of the system is
reflected in the combination of the irreversible product
release reactions with the overall reversibility of the
modification of S.

In the regime of low substrate Stot ≪ E1;tot; E2;tot, we
have that ½E1� ≈ E1;tot and ½E2� ≈ E2;tot, and the nonlinear
mass-action dynamics implied by Eq. (G2) reduce to linear
kinetics, with the enzyme concentrations “absorbed” into
the rate constants (see Fig. 14).
In this work, we consider the low-substrate limit and

study the relative probability πS�=πS for a particular
substrate molecule to be modified. For thermodynamic
consistency, all reactions must be reversible, so we must
include product rebinding. We further suppose that con-
centrations of other participants in these reactions (e.g.,
ATP and ADP in the case of phosphorylation or dephos-
phorylation) are held at fixed values. These choices yield a
system of the form we study in the preceding sections, with
linear dynamics of the form (1), held out of equilibrium by
the cycle force FC¼lnðW21W32W43W14=W12W23W34W41Þ.
For a system such as this one, driven chemically, we can
identifyFC ¼ Δμ=kBT. Our results proved above then imply
a bound, in terms of Δμ, on the sensitivity s of the steady-
state ratio πS�=πS to a change in ½E1�.
Perturbing ½E1� is equivalent to perturbing two edge

parameters and a vertex parameter:

½E1�
∂

∂½E1�
¼ W21

∂
∂W21

þW23

∂
∂W23

¼
�
W12

∂
∂W12

þW21

∂
∂W21

�
þ
�
W23

∂
∂W23

þW32

∂
∂W32

�
−
�
W12

∂
∂W12

þW32

∂
∂W32

�

¼ −
∂

∂B12

−
∂

∂B23

−
∂

∂E2

: ðG3Þ

Now we can apply Corollaries 1 and 4 to bound the
sensitivity

s ¼
����½E1�

∂ lnðπ3=π1Þ
∂½E1�

����
¼

���� −
� ∂
∂B12

þ ∂
∂B23

�
ln

�
π3
π1

�
−
∂ lnðπ3=π1Þ

∂E2

����
≤ tanhðF1↔3=4Þ ¼ tanhðΔμ=4kBTÞ: ðG4Þ

Remarkably, the form of the bound (G4) remains
unchanged even if the assumption that catalysis proceeds
via a single intermediate complex is completely relaxed. In
particular, following Gunawardena et al. [37,38], we
consider an arbitrary reaction network built out of a
collection of any number of reactions of the following
form, which include an arbitrary number of intermediates
and reactions between them:

E1 þ S ↔ ðE1SÞi;
E1 þ S� ↔ ðE1SÞi;
ðE1SÞi ↔ ðE1SÞj;
E2 þ S ↔ ðE2SÞi;
E2 þ S� ↔ ðE2SÞi;
ðE2SÞi ↔ ðE2SÞj: ðG5Þ

A general network of this form is schematically represented
in Fig. 4(b). In any such network, consider the subgraph
whose vertices V are all the intermediates fðE1SÞig con-
taining E1, together with S and S�, and whose edges E are
all the edges between the vertices V. Scaling ½E1� is
equivalent to decreasing all the edge parameters associated
to edges in E and the vertex parameters associated to
vertices in the set VI ¼ VnfS; S�g. This decomposition
yields the result

(a) (b)

FIG. 14. (a) The transition graph G arising from the Goldbeter-
Koshland model in the low-substrate limit, with product
rebinding. Two transition rates (red) depend on the (assumed
constant) free enzyme concentration ½E1� that we vary. Scaling
½E1� is equivalent to a perturbation of two edge parameters and
one vertex parameter (blue). (b) State numbers and rate labels we
use in this subsection. Key equivalences are 1 ¼ S, 3 ¼ S�,
W21 ¼ k1½E1�, and W23 ¼ k2½E1�.
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s ¼
����½E1�

∂ lnðπS�=πSÞ
∂½E1�

����
¼

���� −
�X

v∈VI

∂
∂Ev

þ
X
e∈E

∂
∂Be

�
ln

�
πS�

πS

�����
≤
����
�X

e∈E

∂
∂Be

�
ln

�
πS�

πS

�����
≤ tanhðFS�↔S=4Þ ¼ tanhðΔμ=4kBTÞ; ðG6Þ

where the last line follows from Corollary 5 with
W ¼ fS; S�g, jWj ¼ 2.

2. Biochemical sensing and the
Govern–ten Wolde trade-off

Now we show how our sensing bound (24) arises and
how it reduces to the results of Govern and ten Wolde [39]
in the appropriate limits.
To arrive at Eq. (24), we first employ the approxi-

mation (23):�
σe
½E1�

�
2

≈
σ2s

ð∂μs=∂½E1�Þ2
1

½E1�2

¼ NπS� ð1 − πS� Þ
N2ð½E1�∂πS�=∂½E1�Þ2

: ðG7Þ

Now we recognize the derivative in the denominator as
being an instance of the kinds we have considered already.
In particular, the application of Eq. (20), in the form of a
ratio of general observables, together with our vertex
perturbation results, yields

���½E1�
∂πS�
∂½E1�

þπS�πY

���≤ πS� ð1−πS� Þ tanhðΔμ=4kBTÞ; ðG8Þ

where πY is the fraction of the total substrate bound up in
complexes involving E1. In Ref. [39], these enzymatic
intermediates are neglected (e.g., Eq. [S22] of Ref. [39]),
and to proceed we do the same here, supposing that πY is
very small. We then get�

σe
½E1�

�
2 ≳ 1

NπS� ð1 − πS� Þ tanhðΔμ=4kBTÞ2

≥
4

N tanhðΔμ=4kBTÞ2
; ðG9Þ

as desired. In the limit Δμ ≫ kBT,�
σe
½E1�

�
2 ≳ 4

N
; ðG10Þ

whereas in the limit Δμ ≪ kBT, this result yields

�
σe
½E1�

�
2 ≳ 64

N

�
kBT
Δμ

�
2

: ðG11Þ

To make contact between our low potential limit Δμ ≪
kBT (G11) and the results of Govern and ten Wolde, we
now review the context of their results. In that paper, the
authors study the error δc=c in an estimate of the concen-
tration c of an extracellular ligand L, which binds to
receptor R, forming a complex: Rþ L ↔ RL. The com-
plex RL then plays the role of E1 in our discussion above,
participating in a covalent modification cycle. The con-
centration of the ligand-bound receptor (in our notation E1,
in their notation RL) is given by

½E1� ¼ ½RL� ¼ RTp;

p ¼ c
cþ K

; ðG12Þ

where K is the dissociation constant and RT is the total
concentration of receptors.
An estimate of c can be constructed, just as we describe

in the main text, producing an estimate of ½E1�. Using the
approximation (23) together with Eq. (G12) relates the
error of these estimates:�

δc
c

�
2

≈
1

ð1 − pÞ2
�

σe
½E1�

�
2

: ðG13Þ

The authors of Ref. [39] compare the sensing error ðδc=cÞ2
not to the chemical potential difference Δμ, but to a
quantity w, which is the dissipation rate of the whole
system, normalized by the sum of all the rates (forward and
reverse) around the modification cycle (in the case studied
by the authors, consisting of only two states, in our
notation, S and S�, and no intermediates). We shall call
this quantity, which is the rate of relaxation to the steady
state, R. So, in our notation,

w ¼
�
N × jJj × Δμ

kBT

�
=R; ðG14Þ

where J is the net current around the cycle, per substrate
molecule. The arguments of Govern and ten Wolde show
that, in the limit Δμ ≪ kBT,�

δc
c

�
2

≥
4

ð1 − pÞ2w : ðG15Þ

This result is slightly tighter than the inequality (S26) they
write in Ref. [39] but also follows from their argument. As a
consequence of Eqs. (G13) and (G15), we then get

ðσe=½E1�Þ2 ≥ 4=w: ðG16Þ
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To show that this bound coincides with our result (G11), we
need to show that for a fixed small force the smallest value
achieved by 4=w is 64ðkBTÞ2=NðΔμÞ2. If this fact were not
so, it would imply that either our result was weaker than
that of Govern and ten Wolde, or vice versa.
To show that Eqs. (G11) and (G16) do coincide for a

fixed small force, we use the inequality

jJj
R

≤ πS� ð1 − πS� Þ tanh
�

Δμ
4kBT

�
≤

Δμ
16kBT

; ðG17Þ

which holds (for a two-state system), by the same algebra
(C6)–(C8) that leads to our symmetric edge perturbation
result. See also Malaguti and ten Wolde [60] [Eqs. (S112)–
(S114)], who give an explicit expression for jJj=R.
Plugging Eq. (G17) into the definition (G14), we get

4

w
≥
64

N

�
kBT
Δμ

�
2

: ðG18Þ

Additionally, this inequality can be saturated in the limit
Δμ ≪ kBT, because there is a near-equilibrium regime in
which jJj=R ≈ Δμ=16kBT. This result establishes the
desired equivalence between our results.

3. Kinetic proofreading

In our presentation and analysis here, we follow closely
the papers of Murugan, Huse, and Leibler [7,47]. Our
results generalize bounds on the discriminatory index ν
found in those works.
First, we consider the single-loop, three-state network

(see Fig. 15) equivalent to the system studied by Hopfield
and Ninio [45,46]. A perturbation of the binding energy Δ
can be decomposed as a linear combination of vertex and
symmetric edge parameter perturbations. In terms of the
notation we introduce in Fig. 15(b), we have

∂
∂Δ ¼ W12

∂
∂W12

þW13

∂
∂W13

¼
�
W13

∂
∂W13

þW23

∂
∂W23

�
þ
�
W12

∂
∂W12

þW32

∂
∂W32

�
−
�
W23

∂
∂W23

þW32

∂
∂W32

�

¼ ∂
∂E3

þ ∂
∂E2

þ ∂
∂B23

: ðG19Þ

Now we can apply Corollaries 1 and 2 to derive the bound

jν − 1j ¼
���� ∂ lnðπ1=π3Þ∂Δ − 1

���� ¼
���� ∂ lnðπ1=π3Þ∂E3

þ ∂ lnðπ1=π3Þ
∂E2

þ ∂ lnðπ1=π3Þ
∂B23

− 1

����
≤ j1þ 0 − 1jþ

���� ∂ lnðπ1=π3Þ∂B23

����
≤ tanh ðFmax=4Þ ¼ tanh ðΔμ=4kBTÞ: ðG20Þ

In the case of the more general kinetic proofreading scheme [7,47], where m complexes can dissociate, described in
Fig. 6, perturbing Δ is equivalent to perturbing the edge and vertex parameters associated to the edges E and vertices V on
one side of the fence. We then have

(a) (b)

FIG. 15. (a) The transition graph G for the single-loop kinetic
proofreading mechanism of Hopfield. The dissociation rates of
the complexes ES� and ES are the only rates that depend on
the binding energy Δ. Perturbing Δ is equivalent to vertex and
edge perturbations (blue). (b) State numbers and rate labels we
use in this subsection. Key equivalences are 1 ¼ E, 3 ¼ ES,
W12 ¼ k1eΔ, and W13 ¼ k2eΔ.
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jν − 1j ¼
���� ∂ lnðπE=πESÞ∂Δ − 1

����
¼

����
�X

v∈V

∂
∂Ev

þ
X
e∈E

∂
∂Be

�
ln

�
πE
πES

�
− 1

����
≤ j1 − 1j þ

����
�X

e∈E

∂
∂Be

�
ln

�
πE
πES

�����
≤ ðm − 1Þ tanhðFE↔ES=4Þ; ðG21Þ

where in the last line we apply Corollary 5.
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